The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
In 2012, the World Health Organization (WHO) set a comprehensive set of nine global voluntary targets, including the landmark "25 by 25" mortality reduction target, and 25 indicators. WHO has also highlighted the importance of Non-Communicable Disease (NCD) surveillance as a key action by Member States in addressing NCDs. This study aimed to examine the current national NCD surveillance tools, activities and performance in Malaysia based on the WHO Global Monitoring Framework for NCDs and to highlight gaps and priorities moving forward. A desk review was conducted from August to October in 2020, to examine the current national NCD surveillance activities in Malaysia from multiple sources. Policy and program documents relating to NCD surveillance in Malaysia from 2010 to 2020 were identified and analyzed. The findings of this review are presented according to the three major themes of the Global Monitoring Framework: monitoring of exposure/risk factor, monitoring of outcomes and health system capacity/response. Currently, there is a robust monitoring system for NCD Surveillance in Malaysia for indicators that are monitored by the WHO NCD Global Monitoring Framework, particularly for outcome and exposure monitoring. However, Malaysia still lacks data for the surveillance of the health system indicators of the framework. Although Malaysia has an NCD surveillance in place that is adequate for the WHO NCD Global Monitoring Framework, there are areas that require strengthening. The country must also look beyond these set of indicators in view of the increasing burden and impact of the COVID-19 pandemic. This includes incorporating mental health indicators and leveraging on alternate sources of data relating to behaviors.
Tapinoma indicum (Forel) (Hymenoptera: Formicidae) is a nuisance pest in Asia countries. However, studies on T. indicum are limited, especially in the field of molecular biology, to investigate the species characteristic at the molecular level. This paper aims to provide valuable genetic markers as tools with which to study the T. indicum population. In this study, a total of 143,998 microsatellite markers were developed based on the 2.61 × 106 microsatellites isolated from T. indicum genomic DNA sequences. Fifty selected microsatellite markers were amplified with varying numbers of alleles ranging from 0 to 19. Seven out of fifty microsatellite markers were characterized for polymorphism with the Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) analysis. All seven microsatellite markers demonstrated a high polymorphic information content (PIC) value ranging from 0.87 to 0.93, with a mean value of 0.90. There is no evidence of scoring errors caused by stutter peaks, no large allele dropout, and no linkage disequilibrium among the seven loci; although loci Ti-Tr04, Ti-Tr09, Ti-Te04, Ti-Te13, and Ti-Pe5 showed signs of null alleles and deviation from the HWE due to excessive homozygosity. In conclusion, a significant amount of microsatellite markers was developed from the data set of next-generation sequencing, and seven of microsatellite markers were validated as informative genetic markers that can be utilized to study the T. indicum population.
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among women worldwide. Despite the overall successes in breast cancer therapy, hormone-independent HER2 negative breast cancer, also known as triple negative breast cancer (TNBC), lacking estrogens and progesterone receptors and with an excessive expression of human epidermal growth factor receptor 2 (HER2), along with the hormone-independent HER2 positive subtype, still remain major challenges in breast cancer treatment. Due to their poor prognoses, aggressive phenotype, and highly metastasis features, new alternative therapies have become an urgent clinical need. One of the most noteworthy phytochemicals, curcumin, has attracted enormous attention as a promising drug candidate in breast cancer prevention and treatment due to its multi-targeting effect. Curcumin interrupts major stages of tumorigenesis including cell proliferation, survival, angiogenesis, and metastasis in hormone-independent breast cancer through the modulation of multiple signaling pathways. The current review has highlighted the anticancer activity of curcumin in hormone-independent breast cancer via focusing on its impact on key signaling pathways including the PI3K/Akt/mTOR pathway, JAK/STAT pathway, MAPK pathway, NF-ĸB pathway, p53 pathway, and Wnt/β-catenin, as well as apoptotic and cell cycle pathways. Besides, its therapeutic implications in clinical trials are here presented.
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein-Barr virus infection, individual's genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
Lung cancers, the number one cancer killer, can be broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with NSCLC being the most commonly diagnosed type. Anticancer agents for NSCLC suffer from various limitations that can be partly overcome by the application of nanomedicines. Nanoparticles is a branch within nanomedicine that can improve the delivery of anticancer drugs, whilst ensuring the stability and sufficient bioavailability following administration. There are many publications available in the literature exploring different types of nanoparticles from different materials. The effectiveness of a treatment option needs to be validated in suitable in vitro and/or in vivo models. This includes the developed nanoparticles, to prove their safety and efficacy. Many researchers have turned towards in vitro models that use normal cells or specific cells from diseased tissues. However, in cellular works, the physiological dynamics that is available in the body could not be mimicked entirely, and hence, there is still possible development of false positive or false negative results from the in vitro models. This article provides an overview of NSCLC, the different nanoparticles available to date, and in vitro evaluation of the nanoparticles. Different types of cells suitable for in vitro study and the important precautions to limit the development of false results are also extensively discussed.
Climate change has been predicted to influence the marine phytoplankton community and its carbon acquisition strategy. Extracellular carbonic anhydrase (eCA) is a zinc metalloenzyme that catalyses the relatively slow interconversion between HCO3- and CO2. Early results indicated that sub-nanomolar levels of eCA at the sea surface were sufficient to enhance the oceanic uptake rate of CO2 on a global scale by 15%, an addition of 0.37 Pg C year-1. Despite its central role in the marine carbon cycle, only in recent years have new analytical techniques allowed the first quantifications of eCA and its activity in the oceans. This opens up new research areas in the field of marine biogeochemistry and climate change. Light and suitable pH conditions, as well as growth stage, are crucial factors in eCA expression. Previous studies showed that phytoplankton eCA activity and concentrations are affected by environmental stressors such as ocean acidification and UV radiation as well as changing light conditions. For this reason, eCA is suggested as a biochemical indicator in biomonitoring programmes and could be used for future response prediction studies in changing oceans. This review aims to identify the current knowledge and gaps where new research efforts should be focused to better determine the potential feedback of phytoplankton via eCA in the marine carbon cycle in changing oceans.
Diarylpentanoid (DAP), an analog that was structurally modified from a naturally occurring curcumin, has shown to enhance anticancer efficacy compared to its parent compound in various cancers. This study aims to determine the cytotoxicity, antiproliferative, and apoptotic activity of diarylpentanoid MS13 on two subtypes of non-small cell lung cancer (NSCLC) cells: squamous cell carcinoma (NCI-H520) and adenocarcinoma (NCI-H23). Gene expression analysis was performed using Nanostring PanCancer Pathways Panel to determine significant signaling pathways and targeted genes in these treated cells. Cytotoxicity screening revealed that MS13 exhibited greater inhibitory effect in NCI-H520 and NCI-H23 cells compared to curcumin. MS13 induced anti-proliferative activity in both cells in a dose- and time-dependent manner. Morphological analysis revealed that a significant number of MS13-treated cells exhibited apoptosis. A significant increase in caspase-3 activity and decrease in Bcl-2 protein concentration was noted in both MS13-treated cells in a time- and dose-dependent manner. A total of 77 and 47 differential expressed genes (DEGs) were regulated in MS13 treated-NCI-H520 and NCI-H23 cells, respectively. Among the DEGs, 22 were mutually expressed in both NCI-H520 and NCI-H23 cells in response to MS13 treatment. The top DEGs modulated by MS13 in NCI-H520-DUSP4, CDKN1A, GADD45G, NGFR, and EPHA2-and NCI-H23 cells-HGF, MET, COL5A2, MCM7, and GNG4-were highly associated with PI3K, cell cycle-apoptosis, and MAPK signaling pathways. In conclusion, MS13 may induce antiproliferation and apoptosis activity in squamous cell carcinoma and adenocarcinoma of NSCLC cells by modulating DEGs associated with PI3K-AKT, cell cycle-apoptosis, and MAPK pathways. Therefore, our present findings could provide an insight into the anticancer activity of MS13 and merits further investigation as a potential anticancer agent for NSCLC cancer therapy.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents significant social, economic and political challenges worldwide. SARS-CoV-2 has caused over 3.5 million deaths since late 2019. Mutations in the spike (S) glycoprotein are of particular concern because it harbours the domain which recognises the angiotensin-converting enzyme 2 (ACE2) receptor and is the target for neutralising antibodies. Mutations in the S protein may induce alterations in the surface spike structures, changing the conformational B-cell epitopes and leading to a potential reduction in vaccine efficacy. Here, we summarise how the more important variants of SARS-CoV-2, which include cluster 5, lineages B.1.1.7 (Alpha variant), B.1.351 (Beta), P.1 (B.1.1.28/Gamma), B.1.427/B.1.429 (Epsilon), B.1.526 (Iota) and B.1.617.2 (Delta) confer mutations in their respective spike proteins which enhance viral fitness by improving binding affinity to the ACE2 receptor and lead to an increase in infectivity and transmission. We further discuss how these spike protein mutations provide resistance against immune responses, either acquired naturally or induced by vaccination. This information will be valuable in guiding the development of vaccines and other therapeutics for protection against the ongoing coronavirus disease 2019 (COVID-19) pandemic.
Multiple myeloma (MM) is considered to be the second most common blood malignancy and it is characterized by abnormal proliferation and an accumulation of malignant plasma cells in the bone marrow. Although the currently utilized markers in the diagnosis and assessment of MM are showing promising results, the incidence and mortality rate of the disease are still high. Therefore, exploring and developing better diagnostic or prognostic biomarkers have drawn global interest. In the present review, we highlight some of the recently reported and investigated novel biomarkers that have great potentials as diagnostic and/or prognostic tools in MM. These biomarkers include angiogenic markers, miRNAs as well as proteomic and immunological biomarkers. Moreover, we present some of the advanced methodologies that could be utilized in the early and competent diagnosis of MM. The present review also focuses on understanding the molecular concepts and pathways involved in these biomarkers in order to validate and efficiently utilize them. The present review may also help in identifying areas of improvement for better diagnosis and superior outcomes of MM.
Clitorea ternatea has been used in Ayurvedic medicine as a brain stimulant to treat mental illnesses and mental functional disorders. In this study, the metabolite profiles of crude C. ternatea root extract (CTRE), ethyl acetate (EA), and 50% aqueous methanol (50% MeOH) fractions were investigated using ultrahigh-performance liquid chromatography-diode array detector-tandem mass spectrometry (UHPLC-DAD-MS/MS), while their effect on the stress-like behavior of zebrafish, pharmacologically induced with reserpine, was investigated. A total of 32 compounds were putatively identified, among which, a series of norneolignans, clitorienolactones, and various flavonoids (flavone, flavonol, isoflavone, and isoflavanone) was found to comprise the major constituents, particularly in the EA and 50% MeOH fractions. The clitorienolactones, presently unique to the species, were present in both the free and glycosylated forms in the roots. Both the EA and 50% MeOH fractions displayed moderate effects on the stress-induced zebrafish model, significantly decreasing freezing duration and elevating the total distance travelled and average velocity, 72 h post-treatment. The results of the present study provide further evidence that the basis for the use of C. ternatea roots in traditional medicine to alleviate brain-related conditions, such as stress and depression, is attributable to the presence of clitorienolactones and the isoflavonoidal constituents.
The use of chemical modification of cellulosic fibre is applied in order to increase the hydrophobicity, hence improving the compatibility between the fibre and matrix bonding. In this study, the effect of propionic anhydride modification of kenaf fibre was investigated to determine the role of bionanocarbon from oil palm shell agricultural wastes in the improvement of the functional properties of bionanocomposites. The vinyl esters reinforced with unmodified and propionic anhydride modified kenaf fibres bio nanocomposites were prepared using 0, 1, 3, 5 wt% of bio-nanocarbon. Characterisation of the fabricated bionanocomposite was carried out using FESEM, TEM, FT-IR and TGA to investigate the morphological analysis, surface properties, functional and thermal analyses, respectively. Mechanical performance of bionanocomposites was evaluated according to standard methods. The chemical modification of cellulosic fibre with the incorporation of bionanocarbon in the matrix exhibited high enhancement of the tensile, flexural, and impact strengths, for approximately 63.91%, 49.61% and 54.82%, respectively. The morphological, structural and functional analyses revealed that better compatibility of the modified fibre-matrix interaction was achieved at 3% bionanocarbon loading, which indicated improved properties of the bionanocomposite. The nanocomposites exhibited high degradation temperature which signified good thermal stability properties. The improved properties of the bionanocomposite were attributed to the effect of the surface modification and bionanocarbon enhancement of the fibre-matrix networks.
The present work reports the biobleaching effect on OPEFB pulp upon utilisation of extracellular xylano-pectinolytic enzymes simultaneously yielded from Bacillus amyloliquefaciens ADI2. The impacts of different doses, retention times, pH, and temperatures required for the pulp biobleaching process were delineated accordingly. Here, the OPEFB pulp was subjected to pre-treatment with xylano-pectinolytic enzymes generated from the same alkalo-thermotolerant isolate that yielded those of higher quality. Remarkable enhanced outcomes were observed across varying pulp attributes: for example, enzyme-treated pulp treated to chemical bleaching sequence generated improved brightness of 11.25%. This resulted in 11.25% of less chlorine or chemical consumption required for obtaining pulp with optical attributes identical to those generated via typical chemical bleaching processes. Ultimately, the reduced consumption of chlorine would minimise the organochlorine compounds found in an effluent, resulting in a lowered environmental effect of paper-making processes overall as a consequence. This will undoubtedly facilitate such environmentally-friendly technology incorporation in the paper pulp industry of today.
Zika virus (ZIKV) represents a re-emerging threat to global health due to its association with congenital birth defects. ZIKV NS2B-NS3 protease is crucial for virus replication by cleaving viral polyprotein at various junctions to release viral proteins and cause cytotoxic effects in ZIKV-infected cells. This study characterized the inhibitory effects of doxycycline against ZIKV NS2B-NS3 protease and viral replication in human skin cells. The in silico data showed that doxycycline binds to the active site of ZIKV protease at a low docking energy (-7.8 Kcal/mol) via four hydrogen bonds with the protease residues TYR1130, SER1135, GLY1151, and ASP83. Doxycycline efficiently inhibited viral NS2B-NS3 protease at average human temperature (37 °C) and human temperature with a high fever during virus infection (40 °C). Interestingly, doxycycline showed a higher inhibitory effect at 40 °C (IC50 = 5.3 µM) compared to 37 °C (9.9 µM). The virus replication was considerably reduced by increasing the concentration of doxycycline. An approximately 50% reduction in virus replication was observed at 20 µM of doxycycline. Treatment with 20 µM of doxycycline reduced the cytopathic effects (CPE), and the 40 µM of doxycycline almost eliminated the CPE of human skin cells. This study showed that doxycycline binds to the ZIKV protease and inhibits its catalytic activity at a low micro-molecular concentration range. Treatment of human skin fibroblast with doxycycline eliminated ZIKV infection and protected the cells against the cytopathic effects of the infection.
The endoplasmic reticulum (ER) plays a multifunctional role in lipid biosynthesis, calcium storage, protein folding, and processing. Thus, maintaining ER homeostasis is essential for cellular functions. Several pathophysiological conditions and pharmacological agents are known to disrupt ER homeostasis, thereby, causing ER stress. The cells react to ER stress by initiating an adaptive signaling process called the unfolded protein response (UPR). However, the ER initiates death signaling pathways when ER stress persists. ER stress is linked to several diseases, such as cancer, obesity, and diabetes. Thus, its regulation can provide possible therapeutic targets for these. Current evidence suggests that chronic hyperglycemia and hyperlipidemia linked to type II diabetes disrupt ER homeostasis, thereby, resulting in irreversible UPR activation and cell death. Despite progress in understanding the pathophysiology of the UPR and ER stress, to date, the mechanisms of ER stress in relation to type II diabetes remain unclear. This review provides up-to-date information regarding the UPR, ER stress mechanisms, insulin dysfunction, oxidative stress, and the therapeutic potential of targeting specific ER stress pathways.
MeSH terms: Animals; Diabetes Mellitus, Type 2/drug therapy; Diabetes Mellitus, Type 2/metabolism*; Diabetes Mellitus, Type 2/pathology; Humans; Hyperglycemia/drug therapy; Hyperglycemia/metabolism; Hyperglycemia/pathology; Hyperlipidemias/drug therapy; Hyperlipidemias/metabolism; Hyperlipidemias/pathology; Neoplasms/drug therapy; Neoplasms/metabolism; Neoplasms/pathology; Obesity/drug therapy; Obesity/metabolism; Obesity/pathology; Signal Transduction*; Oxidative Stress*; Endoplasmic Reticulum Stress*
The attrition rate of longitudinal study participation remains a challenge. To date, the Malaysian Cohort (TMC) study follow-up rate was only 42.7%. This study objective is to identify the cause of attrition among TMC participants and the measures to curb it. A total of 19,343 TMC participants from Kuala Lumpur and Selangor that was due for follow-up were studied. The two most common attrition reasons are undergoing medical treatment at another government or private health center (7.0%) and loss of interest in participating in the TMC project (5.1%). Those who were inclined to drop out were mostly Chinese, aged 50 years and above, unemployed, and had comorbidities during the baseline recruitment. We have also contacted 2183 participants for the home recruitment follow-up, and about 10.9% agreed to join. Home recruitment slightly improved the overall follow-up rate from 42.7% to 43.5% during the three-month study period.
Study name: The Malaysian Cohort (TMC) project
The past decade has witnessed a surge in epidemiological studies that have explored the relationship between the oral microbiome and oral cancer. Owing to the diversity of the published data, a comprehensive systematic overview of the currently available evidence is critical. This review summarises the current evidence on the metagenomic studies on the oral microbiome in oral cancer. A systematic search was conducted in Medline and Embase databases to identify original studies examining the differences in the oral microbiome of oral cancer cases and controls. A total of twenty-six studies were identified that reported differences in microbial abundance between oral squamous cell carcinoma (OSCC) and controls. Although almost all the studies identified microbial dysbiosis to be associated with oral cancer, the detailed qualitative analysis did not reveal the presence/abundance of any individual bacteria or a consortium to be consistently enriched in OSCC samples across the studies. Interestingly, few studies reported a surge of periodontopathogenic taxa, especially Fusobacteria, whereas others demonstrated a depletion of commensal taxa Streptococci. Considerable heterogeneity could be identified in the parameters used for designing the studies as well as reporting the microbial data. If microbiome data needs to be translated in the future, to complement the clinical parameters for diagnosis and prognosis of oral cancer, further studies with the integration of clinical variables, adequate statistical power, reproducible methods, and models are required.
MeSH terms: Carcinoma, Squamous Cell*; Head and Neck Neoplasms*; Humans; Mouth Neoplasms*; Metagenomics; Microbiota*
The impact of happiness on creativity is well-established. However, little is known about the effect of creativity on well-being. Two studies were thus conducted to examine the impact of creativity on subjective well-being. In the first study, 256 undergraduate students (Study 1a) and 291 working adults (Study 1b) self-reported their creativity, stress, and subjective well-being. Hierarchical multiple regression analysis showed a positive relationship between creativity and subjective well-being after controlling the effect of self-perceived stress and demographics in both samples. Study 2 then employed an experimental design to examine the causal relationship between creativity and subjective well-being. Half of the 68 undergraduates underwent a creativity priming task followed by a divergent thinking test as well as self-reported stress and subjective well-being. The priming task was found to boost creative performance in the pilot study (Study 2a) and the actual study (Study 2b). Moreover, after controlling the effect of self-perceived stress, ANCOVA analysis showed that participants receiving the priming reported higher subjective well-being scores than their counterparts in the control group. The overall findings not only shed light on the facilitative effect of creativity on subjective well-being but also highlight the necessity of considering the reciprocal relationship of the two constructs in future research.
MeSH terms: Adult; Creativity; Happiness*; Humans; Pilot Projects; Students; Thinking*
According to continuity theory, successful aging is promoted when older people are able to continue familiar activities as a way to maintain self-identity. The purpose of this study was to examine the importance of both external resources provided by Taipei city and older adults' internal resources in internal and external continuity and life satisfaction. The data were from the 2019 Taipei City Senior Citizen Condition Survey acquired through face-to-face interviews. Only the community-based sample without disability was included in the analysis (n = 1494). Structural equation modeling was used for the analysis. Both internal and external resources significantly promoted internal continuity (physical activity, Internet use, and lifelong learning) and external continuity (work, social connectedness, and social participation), and the effects of personal resources were larger. External continuity was positively related to life satisfaction. The effects of external resources on continuity and life satisfaction were stronger in older women than in older men. Age-friendly cities may provide support for activity continuity and promote well-being for older people. Policy suggestions are discussed.
MeSH terms: Aged; Aging*; Cities; Female; Humans; Male; Personal Satisfaction*; Quality of Life; Surveys and Questionnaires; Social Participation