Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) used to treat pain and inflammation. The objective of the current study was to develop a sensitive, fast and high-throughput HPLC-ESI-MS/MS method to measure etoricoxib levels in human plasma using a one-step methanol protein precipitation technique. A tandem mass spectrometer equipped with an electrospray ionization (ESI) source operated in a positive mode and multiple reaction monitoring (MRM) were used for data collection. The quantitative MRM transition ions were m/z 359.15 > 279.10 and m/z 363.10 > 282.10 for etoricoxib and IS. The linear range was from 10.00 to 4000.39 ng/mL and the validation parameters were within the acceptance limits of the European Medicine Agency (EMA) and Food and Drug Analysis (FDA) guidelines. The present method was sensitive (10.00 ng/mL with S/N > 40), simple, selective (K prime > 2), and fast (short run time of 2 min), with negligible matrix effect and consistent recovery, suitable for high throughput analysis. The method was used to quantitate etoricoxib plasma concentrations in a bioequivalence study of two 120 mg etoricoxib formulations. Incurred sample reanalysis results further supported that the method was robust and reproducible.
MeSH terms: Chromatography, High Pressure Liquid/methods; Humans; Therapeutic Equivalency; Reproducibility of Results
A new solid phase micro extraction (SPME) fiber coating composed of electrospun polyethylene terephthalate (PET) nanofibrous mat doped with superhydrophobic nanosilica (SiO2) was coated on a stainless-steel wire without the need of a binder. The coating was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR) techniques and it was used in headspace-SPME of 16 organochlorine pesticides in water samples prior to gass chromatography micro electron capture detector (GC-µECD) analysis. The effects of main factors such as adsorption composition, electrospinning flow rate, salt concentration, extraction temperature, extraction time, and desorption conditions were investigated. Under the optimum conditions, the linear dynamic range (8−1000 ng L−1, R2 > 0.9907), limits of detection (3−80 ng L−1), limits of quantification (8−200 ng L−1), intra-day and inter-day precisions (at 400 and 1000 ng L−1, 1.7−13.8%), and fiber-to-fiber reproducibility (2.4−13.4%) were evaluated. The analysis of spiked tap, sewage, industrial, and mineral water samples for the determination of the analytes resulted in satisfactory relative recoveries (78−120%).
Streptococcosis and aeromonasis inflicted by Streptococcus iniae and Aeromonas hydrophila, respectively, have affected tilapia industries worldwide. In this study, we investigated antibody responses and explored the mechanisms of protection rendered by an oral bivalent vaccine in red tilapia following challenges with S. iniae and A. hydrophila. The results of specific IgM antibody response revealed that the IgM titers against S. iniae and A. hydrophila in the bivalent incorporated (BI) vaccine group were significantly higher (p < 0.05) than those in the bivalent spray (BS) vaccine fish and unvaccinated control fish throughout the experiment. Real-time qPCR results also showed that the gene expression of CD4, MHC-I, MHC-II, IgT, C-type lysozyme, IL-1β, TNF-α, and TGF-β remained significantly higher (p < 0.05) than that of the controls between 24 and 72 h post-infection (hpi) in both mucosal (hindgut) and systemic (spleen and head−kidney) organs of BI vaccinated fish. Furthermore, the highest relative expression of the TGF-β, C-type lysozyme, and IgT genes in the BI vaccinated group was observed in the challenged fish’s spleen (8.8-fold), head kidney (4.4-fold), and hindgut (19.7-fold) tissues, respectively. The present study suggests that the bivalent incorporated (BI) vaccine could effectively improve the immune function and activate both humoral and cell-mediated immunities in vaccinated red tilapia following the bacterial challenges.
Colorectal carcinoma (CRC) is rising exponentially in Asia, representing 11% of cancer worldwide. This study analysed the influence of CRC on patients’ life expectancy (survival and prognosis factors) via clinicopathology data and comorbidity status of CRC patients. Methodology: A retrospective study performed in HUSM using clinical data from the Surgery unit from 2015 to 2020. The demographic and pertinent clinical data were retrieved for preliminary analyses (data cleansing and exploration). Demographics and pathological characteristics were illustrated using descriptive analysis; 5-year survival rates were calculated using Kaplan−Meier methods; potential prognostic variables were analysed using simple and multivariate logistic regression analysis conducted via the Cox proportional hazards model, while the Charlson Comorbidity Scale was used to categorize patients’ disease status. Results: Of a total of 114 CRC patients, two-thirds (89.5%) were from Malay tribes, while Indian and Chinese had 5.3% each. The 50−69.9 years were the most affected group (45.6%). Overall, 40.4% were smokers (majorly male (95.7%)), 14.0% ex-smokers, and 45.6% non-smokers (p-value = 0.001). The Kaplan−Meier overall 5-year median survival time was 62.5%. From the outcomes, patients who were male and >70 years had metastasis present, who presented with per rectal bleeding and were classified as Duke C; and who has tumour in the rectum had the lowest survival rate. Regarding the prognosis factors investigated, “Gender” (adjusted hazard ratio (HR): 2.62; 95% CI: 1.56−7.81, p-value = 0.040), “Presence of metastases” (HR: 3.76; 95% CI: 1.89−7.32, p-value = 0.010), “Metastasis site: Liver” (HR: 5.04; 95% CI: 1.71−19.05, p-value = 0.039), “Lymphovascular permeation” (HR: 2.94; 95% CI: 1.99−5.92, p-value = 0.021), and “CEA-level” (HR: 2.43; 95% CI: 1.49−5.80, p-value = 0.001) remained significant in the final model for multiple Cox proportional hazard regression analyses. There was a significant mean association between tumour grades and the patient’s comorbidity status. Conclusions: Histopathological factors (gender, metastases presence, site of metastases, CEA level, and lymphovascular permeation) showed the best prognosis-predicting factors in CRC.
This article investigated the mechanical performance and corrosion behaviour of a diffusion-bonded A5083 aluminium/A36 mild steel dissimilar joint with a Gallium (Ga) interlayer. The bonding parameters were the bonding temperature (525 and 550 °C), holding time (60 and 120 min) and surface roughness (800 and 1200 grit). Property characterisation was achieved using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) analysis, Vickers microhardness tester, Izod impact tester and potentiodynamic polarisation testing. The results revealed that the significance of the bonding parameters was in the order bonding temperature > surface roughness > holding time. Increasing the bonding temperature resulted in an increase in the impact strength and a corresponding reduction in the corrosion rate and microhardness. However, increasing the grit size decreased the microhardness and a corresponding increase in the impact strength and corrosion rate. The impact strength and corrosion rate decreased with the increasing holding time while the microhardness followed a reverse trend. It was also discovered that incorporating the Ga interlayer resulted in a 67.9% improvement in the degradation rate.
Background and Objectives: Oral squamous cell carcinoma (OSCC) is the sixth most common malignancy in the world. Transient receptor potential vanilloid 4 (TRPV4) channel has been shown to be involved in angiogenesis in multiple types of tumors. However, not much is known about TRPV4′s involvement in OSCC. Thus, in this study, we investigate the effect of administering a TRPV4 agonist on angiogenesis in OSCC. Materials and Methods: Thirty-six Sprague Dawley (SD) rats were used in this study. 4-nitroquinoline 1-oxide (4NQO) was used to induce OSCC. Cisplatin (an anticancer drug), and GSK1016790A (an agonist for TRPV4) was used in this study. Immunohistochemistry was employed to examine the TRPV4 expression. An RT2 Profiler PCR Array was performed for gene expression analysis of TRPV4, vascular growth factors that correspond directly with angiogenesis, such as angiopoietin (Ang-1 and Ang-2), and tyrosine kinase (Tie-1 and Tie-2) receptors. Tumor vessel maturity was assessed by microvessel density and microvessel-pericyte-coverage index. Results: RT2 profiler PCR array showed significant elevated levels of Ang-1 (2.1-fold change; p < 0.05) and Tie-2 (4.5-fold change; p < 0.05) in OSCC following the administration of a combination of GSK1016790A and cisplatin. Additionally, the combination treatment significantly reduced the microvessel density (p < 0.01) and significantly increased the percentage of microvessels covered with pericytes (p < 0.01) in OSCC. Furthermore, tumor size was significantly reduced (p < 0.05) in rats that received cisplatin alone. The combination treatment also greatly reduced the tumor size; however, the data were not statistically significant. Conclusions: The findings suggest that combining a TRPV4 agonist with cisplatin for treatment of OSCC promote vessels normalization via modulation of Ang-1/Tie-2 pathway.
Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.
Diabetes mellitus (DM) and obesity account for the highest burden of non-communicable diseases. There is increasing evidence showing therapeutic patient education (TPE) as a clinically and cost-effective solution to improve biomedical and psychosocial outcomes among people with DM and obesity. The present systematic review and meta-analysis present a critical synthesis of the development of TPE interventions for DM and obesity and the efficacy of these interventions across a range of biomedical, psychosocial and psychological outcomes. A total of 54 of these RCTs were identified among patients with obesity and diabetes and were thus qualitatively synthesized. Out of these, 47 were included in the quantitative synthesis. There was substantial heterogeneity in the reporting of these outcomes (I2 = 88.35%, Q = 317.64), with a significant improvement noted in serum HbA1c levels (standardized mean difference (SMD) = 0.272, 95% CI: 0.118 to 0.525, n = 7360) and body weight (SMD = 0.526, 95% CI: 0.205 to 0.846, n = 1082) in the intervention group. The effect sizes were comparable across interventions delivered by different modes and delivery agents. These interventions can be delivered by allied health staff, doctors or electronically as self-help programs, with similar effectiveness (p < 0.001). These interventions should be implemented in healthcare and community settings to improve the health outcomes in patients suffering from obesity and DM.
MeSH terms: Hemoglobin A, Glycosylated; Humans; Obesity/therapy; Patient Education as Topic*; Randomized Controlled Trials as Topic
There are limited methods to assess how dietary patterns adhere to a healthy and sustainable diet. The aim of this study was to develop a theoretically derived Healthy and Sustainable Diet Index (HSDI). The HSDI uses 12 components within five categories related to environmental sustainability: animal-based foods, seasonal fruits and vegetables, ultra-processed energy-dense nutrient-poor foods, packaged foods and food waste. A maximum of 90 points indicates the highest adherence. The HSDI was applied to 4-day mobile food records (mFRTM) from 247 adults (18−30 years). The mean HSDI score was 42.7 (SD 9.3). Participants who ate meat were less likely to eat vegetables (p < 0.001) and those who ate non-animal protein foods were more likely to eat more fruit (p < 0.001), vegetables (p < 0.05), and milk, yoghurt and cheese (p < 0.05). After adjusting for age, sex and body mass index, multivariable regression found the strongest predictor of the likelihood of being in the lowest total HSDI score tertile were people who only took a bit of notice [OR (95%CI) 5.276 (1.775, 15.681) p < 0.005] or did not pay much/any attention to the health aspects of their diet [OR (95%CI) 8.308 (2.572, 26.836) p < 0.0001]. HSDI provides a new reference standard to assess adherence to a healthy and sustainable diet.
Probiotics are widely used as an adjuvant therapy in various diseases. Nonetheless, it is uncertain how they affect the gut microbiota composition and metabolic and inflammatory outcomes in women who have recently experienced gestational diabetes mellitus (post-GDM). A randomized, double-blind, placebo-controlled clinical trial involving 132 asymptomatic post-GDM women was conducted to close this gap (Clinical Trial Registration: NCT05273073). The intervention (probiotics) group received a cocktail of six probiotic strains from Bifidobacterium and Lactobacillus for 12 weeks, while the placebo group received an identical sachet devoid of living microorganisms. Anthropometric measurements, biochemical analyses, and 16S rRNA gene sequencing results were evaluated pre- and post-intervention. After the 12-week intervention, the probiotics group’s fasting blood glucose level significantly decreased (mean difference −0.20 mmol/L; p = 0.0021). The HbA1c, total cholesterol, triglycerides, and high-sensitivity C-reactive protein levels were significantly different between the two groups (p < 0.05). Sequencing data also demonstrated a large rise in the Bifidobacterium adolescentis following probiotic supplementation. Our findings suggest that multi-strain probiotics are beneficial for improved metabolic and inflammatory outcomes in post-GDM women by modulating gut dysbiosis. This study emphasizes the necessity for a comprehensive strategy for postpartum treatment that includes probiotics to protect post-GDM women from developing glucose intolerance.
Chlorobenzenes (CBs) are persistent and potentially have a carcinogenic effect on mammals. Thus, the determination of CBs is essential for human health. Hence, in this study, novel polyurethane−polysulfone/calix[4]arene (PU-PSU/calix[4]arene) nanofibers were synthesized using an electrospinning approach over in-situ coating on a stainless-steel wire. The nanosorbent was comprehensively characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The SEM analysis depicted the nanofiber’s unique morphology and size distribution in the range of 50−200 nm. To determine the levels of 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,3,4-tetrachlorobenzene in water samples, freshly prepared nanosorbent was employed using headspace-solid phase microextraction (HS-SPME) in combination with gas chromatography micro electron capture detector (GC-µECD). Other calixarenes, such as sulfonated calix[4]arene, p-tert-calixarene, and calix[6]arene were also examined, and among the fabricated sorbents, the PU−PSU/calix[4]arene showed the highest efficiency. The key variables of the procedure, including ionic strength, extraction temperature, extraction duration, and desorption conditions were examined. Under optimal conditions, the LOD (0.1−1.0 pg mL−1), the LDR (0.4−1000 pg mL−1), and the R2 > 0.990 were determined. Additionally, the repeatability from fiber to fiber and the intra-day and inter-day reproducibility were determined to be 1.4−6.0, 4.7−10.1, and 0.9−9.7%, respectively. The nanofiber adsorption capacity was found to be 670−720 pg/g for CBs at an initial concentration of 400 pg mL−1. A satisfactory recovery of 80−106% was attained when the suggested method’s application for detecting chlorobenzenes (CBs) in tap water, river water, sewage water, and industrial water was assessed.
The increasing number of HIV-infected people who are receiving ART, including those with low adherence, is causing the spread of HIV drug resistance (DR). A total of 1396 plasma samples obtained from treatment-experienced patients from the Volga federal district (VFD), Russia, were examined to investigate HIV DR occurrence. The time periods 2008−2015 and 2016−2019 were compared. Fragmentary Sanger sequencing was employed to identify HIV resistance to reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) using an ABI 3500XL genetic analyzer, a ViroSeq™ HIV-1 genotyping system (Alameda, CA, USA) and AmpliSense HIV-Resist-Seq reagent kits (Moscow, Russia). In 2016−2019, HIV DR was detected significantly more often than in 2008−2015 (p < 0.01). Mutations to RTIs retained leading positions in the structure of DR. Frequencies of resistance mutations to nucleoside and non-nucleoside RTIs (NRTIs and NNRTIs) in the spectra of detected mutations show no significant differences. Resistance to NRTIs after 2016 began to be registered more often as a part of multidrug resistance (MDR), as opposed to resistance to a single class of antiretrovirals. The frequency of DR mutations to PIs was low, both before and after 2016 (7.9% and 6.1% in the spectrum, respectively, p > 0.05). MDR registration rate became significantly higher from 2008 to 2019 (17.1% to 72.7% of patients, respectively, p < 0.01). M184V was the dominant replacement in all the years of study. A significant increase in the frequency of K65R replacement was revealed. The prevalence of integrase strand transfer inhibitor (INSTI) resistance mutations remains to be investigated.
MeSH terms: Genotype; HIV Seropositivity*; Humans; Mutation; Protease Inhibitors/pharmacology; Prevalence; Reverse Transcriptase Inhibitors/pharmacology; Reverse Transcriptase Inhibitors/therapeutic use; Integrases/genetics; Drug Resistance, Viral/genetics; Anti-Retroviral Agents/pharmacology; Anti-Retroviral Agents/therapeutic use; HIV Reverse Transcriptase/genetics
Breast cancer-related lymphedema (BCRL) is a form of secondary lymphedema that is characterized by abnormal swelling of one or both arms due to the accumulation of lymph fluid in the interstitial tissue spaces, resulting from obstruction of the lymphatic vessels due to surgery insults, radiotherapy, or chemotherapy. Due to the multifactorial nature of this condition, the pathogenesis of secondary lymphedema remains unclear and the search for molecular factors associated with the condition is ongoing. This study aimed to identify serum microRNAs and adipokines associated with BCRL. Blood was collected from 113 breast cancer survivors and processed to obtain serum for small RNA-sequencing (BCRL vs. non-BCRL, n = 7 per group). MicroRNAs that were differentially expressed (fold change >1.5, p < 0.05) between lymphedema cases and those without lymphedema were further quantified in a validation cohort through quantitative reverse transcription PCR (BCRL n = 16, non-BCRL, n = 83). Leptin and adiponectin levels were measured in a combined cohort (BCRL n = 23, non-BCRL n = 90) using enzyme-linked immunosorbent assays. Two of the most significantly upregulated microRNAs, miR-199a-3p and miR-151a-3p, were strongly correlated with the onset of lymphedema and diabetes mellitus in the BCRL group. Leptin levels were higher in the BCRL cohort compared to the non-BCRL cohort (p < 0.05). A metabolic syndrome biomarker, the adiponectin/leptin ratio, was found to be lower in the BCRL group than in the non-BCRL group (median: 0.28 vs. 0.41, p < 0.05). Extensive studies on the mechanisms of the identified microRNAs and association of leptin with arm lymphedema may provide new insights on the potential biomarkers for lymphedema that should be followed up in a prospective cohort study.
The therapeutic potential of bamboos has acquired global attention. Nonetheless, the biological activities of the plants are rarely considered due to limited available references in Sabah, Malaysia. Furthermore, the drying technique could significantly affect the retention and degradation of nutrients in bamboos. Consequently, the current study investigated five drying methods, namely, sun, shade, microwave, oven, and freeze-drying, of the leaves of six bamboo species, Bambusa multiplex, Bambusa tuldoides, Bambusa vulgaris, Dinochloa sublaevigata, Gigantochloa levis, and Schizostachyum brachycladum. The infused bamboo leaves extracts were analysed for their total phenolic content (TPC) and total flavonoid content (TFC). The antioxidant activities of the samples were determined via the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, whereas their toxicities were evaluated through the brine shrimp lethality assay (BSLA). The chemical constituents of the samples were determined using liquid chromatography−tandem mass spectrometry (LC-MS/MS). The freeze-drying method exhibited the highest phytochemical contents and antioxidant activity yield, excluding the B. vulgaris sample, in which the microwave-dried sample recorded the most antioxidant and phytochemical levels. The TPC and TFC results were within the 2.69 ± 0.01−12.59 ± 0.09 mg gallic acid equivalent (GAE)/g and 0.77 ± 0.01−2.12 ± 0.01 mg quercetin equivalent (QE)/g ranges, respectively. The DPPH and ABTS IC50 (half-maximal inhibitory concentration) were 2.92 ± 0.01−4.73 ± 0.02 and 1.89−0.01 to 3.47 ± 0.00 µg/mL, respectively, indicating high radical scavenging activities. The FRAP values differed significantly between the drying methods, within the 6.40 ± 0.12−36.65 ± 0.09 mg Trolox equivalent (TE)/g range. The phytochemical contents and antioxidant capacities exhibited a moderate correlation, revealing that the TPC and TFC were slightly responsible for the antioxidant activities. The toxicity assessment of the bamboo extracts in the current study demonstrated no toxicity against the BSLA based on the LC50 (lethal concentration 50) analysis at >1000 µg/mL. LC-MS analysis showed that alkaloid and pharmaceutical compounds influence antioxidant activities, as found in previous studies. The acquired information might aid in the development of bamboo leaves as functional food items, such as bamboo tea. They could also be investigated for their medicinal ingredients that can be used in the discovery of potential drugs.
MeSH terms: Biphenyl Compounds; Chromatography, Liquid; Flavonoids/pharmacology; Gallic Acid/analysis; Phenols/analysis; Quercetin/analysis; Sulfonic Acids; Tea; Benzothiazoles; Tandem Mass Spectrometry; Phytochemicals/analysis; Phytochemicals/pharmacology
Background: The prevalence of functional constipation (FC) among children varies widely. A survey among healthcare professionals (HCPs) was conducted to better understand the HCP-reported prevalence and (nutritional) management of FC in children 12−36 months old. Methods: An anonymous e-survey using SurveyMonkey was disseminated via emails or WhatsApp among HCPs in eight countries/regions. Results: Data from 2199 respondents were analyzed. The majority of the respondents (65.9%) were from Russia, followed by other countries (Indonesia (11.0%), Malaysia (6.0%)), Mexico, KSA (5.1% (5.7%), Turkey (3.0%), Hong Kong (2.2%), Singapore (1.1%)). In total, 80% of the respondents (n = 1759) were pediatricians. The prevalence of FC in toddlers was reported at less than 5% by 43% of the respondents. Overall, 40% of the respondents reported using ROME IV criteria in > 70% of the cases to diagnose FC, while 11% never uses Rome IV. History of painful defecation and defecations < 2 x/week are the two most important criteria for diagnosing FC. In total, 33% of the respondents reported changing the standard formula to a specific nutritional solution, accompanied by parental reassurance. Conclusion: The most reported prevalence of FC in toddlers in this survey was less than five percent. ROME IV criteria are frequently used for establishing the diagnosis. Nutritional management is preferred over pharmacological treatment in managing FC.
MeSH terms: Child, Preschool; Delivery of Health Care*; Hong Kong; Humans; Infant; Latin America; Surveys and Questionnaires; Prevalence
Increased tissue rigidity is able to activate the Hippo signaling pathway, leading to YAP inactivation by phosphorylation and translocation into the cytoplasm. Accumulating evidence suggests that cytoplasmic pYAP serves as a tumor suppressor and could be a prognostic biomarker for several solid cancers. However, the relationship between tissue rigidity and cytoplasmic pYAP expression in the early stage of lung squamous cell carcinoma (SCC) remains elusive; this was determined in this study by using a mouse model. Female BALB/c mice were assigned into two groups (n = 6; the vehicle (VC) and the pre-malignant (PM) group, which received 70% acetone and 0.04 M N-nitroso-tris-chloroethylurea (NTCU) for 15 weeks, respectively. In this study, the formation of hyperplasia and metaplasia lesions was found in the PM group, indicating the pre-malignant stage of lung SCC. The pre-malignant tissue appeared to be more rigid as characterized by significantly higher (p < 0.05) epithelium thickness, proliferative activity, and collagen content than the VC group. The PM group also had a significantly higher (p < 0.05) cytoplasmic pYAP protein expression than the VC group. In conclusion, increased tissue rigidity may contribute to the upregulation of cytoplasmic pYAP expression, which may act as a tumor suppressor in the early stage of lung SCC.
Increased tissue rigidity is an emerging hallmark of cancer as it plays a critical role in promoting cancer growth. However, the field lacks a defined characterization of tissue rigidity in dual-stage carcinogenesis of lung squamous cell carcinoma (SCC) in vivo. Pre-malignant and malignant lung SCC was developed in BALB/c mice using N-nitroso-tris-chloroethylurea (NTCU). Picro sirius red staining and atomic force microscopy were performed to measure collagen content and collagen (diameter and rigidity), respectively. Then, the expression of tenascin C (TNC) protein was determined using immunohistochemistry staining. Briefly, all tissue rigidity parameters were found to be increased in the Cancer group as compared with the Vehicle group. Importantly, collagen content (33.63 ± 2.39%) and TNC expression (7.97 ± 2.04%) were found to be significantly higher (p < 0.05) in the Malignant Cancer group, as compared with the collagen content (18.08 ± 1.75%) and TNC expression (0.45 ± 0.53%) in the Pre-malignant Cancer group, indicating increased tissue rigidity during carcinogenesis of lung SCC. Overall, tissue rigidity of lung SCC was suggested to be increased during carcinogenesis as indicated by the overexpression of collagen and TNC protein, which may warrant further research as novel therapeutic targets to treat lung SCC effectively.
The irregular shape and depth of wounds could be the major hurdles in wound healing for the common three-dimensional foam, sheet, or film treatment design. The injectable hydrogel is a splendid alternate technique to enhance healing efficiency post-implantation via injectable or 3D-bioprinting technologies. The authentic combination of natural and synthetic polymers could potentially enhance the injectability and biocompatibility properties. Thus, the purpose of this study was to characterise a hybrid gelatin−PVA hydrogel crosslinked with genipin (GNP; natural crosslinker). In brief, gelatin (GE) and PVA were prepared in various concentrations (w/v): GE, GPVA3 (3% PVA), and GPVA5 (5% PVA), followed by a 0.1% (w/v) genipin (GNP) crosslink, to achieve polymerisation in three minutes. The physicochemical and biocompatibility properties were further evaluated. GPVA3_GNP and GPVA5_GNP with GNP demonstrated excellent physicochemical properties compared to GE_GNP and non-crosslinked hydrogels. GPVA5_GNP significantly displayed the optimum swelling ratio (621.1 ± 93.18%) and excellent hydrophilicity (38.51 ± 2.58°). In addition, GPVA5_GNP showed an optimum biodegradation rate (0.02 ± 0.005 mg/h) and the highest mechanical strength with the highest compression modulus (2.14 ± 0.06 MPa). In addition, the surface and cross-sectional view for scanning electron microscopy (SEM) displayed that all of the GPVA hydrogels have optimum average pore sizes (100−199 μm) with interconnected pores. There were no substantial changes in chemical analysis, including FTIR, XRD, and EDX, after PVA and GNP intervention. Furthermore, GPVA hydrogels influenced the cell biocompatibility, which successfully indicated >85% of cell viability. In conclusion, gelatin−PVA hydrogels crosslinked with GNP were proven to have excellent physicochemical, mechanical, and biocompatibility properties, as required for potential bioinks for chronic wound healing.