Affiliations 

  • 1 Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
  • 2 College of Medical and Health Science, Asia University, Taichung, Taiwan
  • 3 Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • 4 Vietnam Academy of Science and Technology (VAST), Center for Research and Technology Transfer (CRETECH), 18 Hoang Quoc Viet, Hanoi, 11300, Vietnam
  • 5 Vietnam Academy of Science and Technology (VAST), Center for Research and Technology Transfer (CRETECH), 18 Hoang Quoc Viet, Hanoi, 11300, Vietnam. nqtrung79@gmail.com
PMID: 35013974 DOI: 10.1007/s11356-022-18570-y

Abstract

The present study reported the synthesis and utilization of a graphene-based hybrid nanocomposite (MnFe2O4/G) to mitigate several synthetic dyes, including methylene blue, malachite green, crystal violet, and Rhodamine B. This adsorbent was structurally analyzed by several physicochemical techniques such as X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, N2 adsorption-desorption isotherm measurement, point of zero charge, and Boehm titrations. BET surface area of MnFe2O4/G was measured at 382.98 m2/g, which was substantially higher than that of MnFe2O4. MnFe2O4/G possessed diverse surface chemistry properties with the presence of many functional groups such as carboxylic acid, phenolic, lactone, and basic groups. MnFe2O4/G was used to remove synthetic dyes in the aqueous media. The effect of many factors, e.g., concentration (5-50 mg/L), pH (4-10), dose (5-20 mg), and temperature (25-45 °C) on adsorption performance of MnFe2O4/G was conducted. Kinetic, isotherm, intraparticle, and thermodynamic models were adopted for investigating adsorption phenomenon of dyes on MnFe2O4/G. The maximum adsorption capacity of dyes over MnFe2O4/G was found as Rhodamine B (67.8 mg/g) < crystal violet (81.3 mg/g) < methylene blue (137.7 mg/g) < malachite green (394.5 mg/g). Some tests were performed to remove mixed dyes, and mixed dyes in the presence of antibiotics with total efficiencies of 65.8-87.9% after 120 min. Moreover, the major role of π-π stacking interaction was clarified to gain insight into the adsorption mechanism. MnFe2O4/G could recycle up to 4 cycles, which may be beneficial for further practical water treatment.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.