In this modern industrialized era of large-scale production of agrochemicals, various emerging contaminants form the main components of waste water and sludge in most of the developing countries of the world. In this concern, phenol- an inevitable and alarming chemical pollutant in aquatic ecosystem, gains a speedy access into the water bodies as an industrial by-product. Though the detrimental effects of phenol have been studied in various aspects of aquatic life, current study is an initiative to unravel the toxic effects of phenol at molecular level in Cirrhinus mrigala. Plasma cortisol level and acetylcholine esterase activity in fish was estimated by Chemiluminescent immunoassay technique and Ellman assay respectively. Scanning electron microscopic studies were carried out to unravel the gill histopathological alterations in exposed fish. It was observed that phenol (22.32 mg/l) inhibits 50 % of acetylcholine esterase activity in brain thereby affecting the locomotion of the targeted carp. Cortisol elevated during the 7th day in exposed fish, but declined progressively on the forthcoming 21st and 28th days. Manifestations in gill encompass curling, fusion, aberrations, sloughing of gill epithelium, wider inter filamentary space and mucus coating in the primary gill filament. It concludes that the discernable deviations produced in both biochemical parameters and key organ gill can be used as a biomarker and bio-indicator respectively for assessing the existence of emerging toxicants in aquatic ecosystem.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.