Affiliations 

  • 1 Chitkara College of Pharmacy, Chitkara University, Punjab, India
  • 2 Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
  • 3 Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • 4 Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
  • 5 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
  • 6 UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
  • 7 School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
  • 8 Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
  • 9 Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
  • 10 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
  • 11 Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
  • 12 NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
  • 13 Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy. Electronic address: esmaeel.sharifi@gmail.com
  • 14 Chitkara College of Pharmacy, Chitkara University, Punjab, India. Electronic address: arundhiman431@gmail.com
  • 15 Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy. Electronic address: pooyanmakvandi@gmail.com
Semin Cancer Biol, 2022 11;86(Pt 2):396-419.
PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003

Abstract

Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.