Affiliations 

  • 1 Southern Federal University, Rostov-on-Don 344006, Russian Federation; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address: maza@sfedu.ru
  • 2 Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55080, Turkey
  • 3 Southern Federal University, Rostov-on-Don 344006, Russian Federation
  • 4 Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China; Department of Civil Engineering, University Center for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
  • 5 Southern Federal University, Rostov-on-Don 344006, Russian Federation; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
Sci Total Environ, 2023 Jul 01;880:163330.
PMID: 37023818 DOI: 10.1016/j.scitotenv.2023.163330

Abstract

Biochar can be used for soil remediation in environmentally beneficial manner, especially when combined with nanomaterials. After a decade of research, still, no comprehensive review was conducted on the effectiveness of biochar-based nanocomposites in controlling heavy metal immobilization at soil interfaces. In this paper, the recent progress in immobilizing heavy metals using biochar-based nanocomposite materials were reviewed and compared their efficacy against that of biochar alone. In details, an overview of results on the immobilization of Pb, Cd, Cu, Zn, Cr, and As was presented by different nanocomposites made by various biochars derived from kenaf bar, green tea, residual bark, cornstalk, wheat straw, sawdust, palm fiber, and bagasse. Biochar nanocomposite was found to be most effective when combined with metallic nanoparticles (Fe3O4 and FeS) and carbonaceous nanomaterials (graphene oxide and chitosan). This study also devoted special consideration to different remediation mechanisms by which the nanomaterials affect the effectiveness of the immobilization process. The effects of nanocomposites on soil characteristics related to pollution migration, phytotoxicity, and soil microbial composition were assessed. A future perspective on nanocomposites' use in contaminated soils was presented.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.