Affiliations 

  • 1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • 2 Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
  • 3 Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
  • 4 Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
  • 5 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address: panjunting@caas.cn
  • 6 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India. Electronic address: meisam.tabatabaei@umt.edu.my
  • 7 Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran. Electronic address: ahmadrajaee@shahroodut.ac.ir
Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124800.
PMID: 37178880 DOI: 10.1016/j.ijbiomac.2023.124800

Abstract

Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.