Displaying publications 1 - 20 of 3080 in total

  1. Ma XR, Sim EU, Ling TY, Tiong TS, Subramaniam SK, Khoo AS
    Malays J Med Sci, 2012 Oct;19(4):23-30.
    PMID: 23613646 MyJurnal
    Ribosomal proteins are traditionally associated with protein biosynthesis until recent studies that implicated their extraribosomal functions in human diseases and cancers. Our previous studies using GeneFishing™ DEG method and microarray revealed underexpression of three ribosomal protein genes, RPS26, RPS27, and RPL32 in cancer of the nasopharynx. Herein, we investigated the expression pattern and nucleotide sequence integrity of these genes in nasopharyngeal carcinoma to further delineate their involvement in tumourigenesis. The relationship of expression level with clinicopathologic factors was also statistically studied.
    Matched MeSH terms: Ribosomal Proteins*
  2. Tan JS, Ong Kc KC, Rhodes A
    Malays J Pathol, 2016 Aug;38(2):75-82.
    PMID: 27568663 MyJurnal
    Heat shock proteins (HSPs) are a family of evolutionary conserved proteins that work as molecular chaperones for cellular proteins essential for cell viability and growth as well as having numerous cyto-protective roles. They are sub-categorised based on their molecular weights; amongst which some of the most extensively studied are the HSP90 and HSP70 families. Important members of these two families; Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90), are the glucose regulated proteins (GRP). These stress-inducible chaperones possess distinct roles from that of the other HSPs, residing mostly in the endoplasmic reticulum and mitochondria, but they can also be translocated to other cellular locations. Their ability in adapting to stress conditions in the tumour microenvironment suggests novel functions in cancer. GRPs have been implicated in many crucial steps of carcinogenesis to include stabilization of oncogenic proteins, induction of tumour angiogenesis, inhibition of apoptosis and replicative senescence, and promotion of invasion and metastasis.
    Matched MeSH terms: Heat-Shock Proteins/metabolism*; Membrane Proteins/metabolism*; HSP70 Heat-Shock Proteins/metabolism*
  3. Anbu P, Gopinath SCB, Chaulagain BP, Lakshmipriya T
    Biomed Res Int, 2017 03 28;2017:2195808.
    PMID: 28459056 DOI: 10.1155/2017/2195808
    Matched MeSH terms: Bacterial Proteins/therapeutic use*; Bacterial Proteins/chemistry*; Fungal Proteins/therapeutic use*; Fungal Proteins/chemistry*
  4. Marzuki, R.M., Mohd, M.A., Nawawi, A.H.M., Redzwan, N.M.
    Single Stock Futures (SSFs) was introduced in Bursa Malaysia on 28th April 2006. There have been many studies on derivative instruments in Malaysia; however, none is on SSFs. Various statistical methods have been used to analyse the SSFs and its spot returns, namely Descriptive Statistics, Unit Root test, VAR, Johansen and Juselius Co-integration test, Granger Causality test, Variance Decomposition test, VECM, and GARCH model. This study analyses the SSFs and spot returns of eight companies listed in Bursa Malaysia. It found that Berjaya Sports Toto Bhd and Genting Bhd have no long-run and short-run causality (Genting Bhd has bi-directional causality) while AirAsia Bhd and AMMB Holdings Bhd’s spot returns’ volatility decreased after the introduction of SSFs; it increased in the other seven companies. In addition, only AMMB Holdings Bhd futures return did not affect its spot return. Bursa Malaysia Bhd and RHB Capital Bhd spot returns lead their futures returns
    Matched MeSH terms: Nuclear Proteins; Proto-Oncogene Proteins; Tumor Suppressor Proteins
  5. Ngo TA, Dinh H, Nguyen TM, Liew FF, Nakata E, Morii T
    Chem. Commun. (Camb.), 2019 Oct 15;55(83):12428-12446.
    PMID: 31576822 DOI: 10.1039/c9cc04661e
    DNA is an attractive molecular building block to construct nanoscale structures for a variety of applications. In addition to their structure and function, modification the DNA nanostructures by other molecules opens almost unlimited possibilities for producing functional DNA-based architectures. Among the molecules to functionalize DNA nanostructures, proteins are one of the most attractive candidates due to their vast functional variations. DNA nanostructures loaded with various types of proteins hold promise for applications in the life and material sciences. When loading proteins of interest on DNA nanostructures, the nanostructures by themselves act as scaffolds to specifically control the location and number of protein molecules. The methods to arrange proteins of interest on DNA scaffolds at high yields while retaining their activity are still the most demanding task in constructing usable protein-modified DNA nanostructures. Here, we provide an overview of the existing methods applied for assembling proteins of interest on DNA scaffolds. The assembling methods were categorized into two main classes, noncovalent and covalent conjugation, with both showing pros and cons. The recent advance of DNA-binding adaptor mediated assembly of proteins on the DNA scaffolds is highlighted and discussed in connection with the future perspectives of protein assembled DNA nanoarchitectures.
    Matched MeSH terms: Proteins/metabolism*; Proteins/chemistry
  6. Rosedale JL
    Matched MeSH terms: Blood Proteins
  7. Shen Ni L, Allaudin ZN, Mohd Lila MA, Othman AM, Othman FB
    BMC Cancer, 2013;13:488.
    PMID: 24144306 DOI: 10.1186/1471-2407-13-488
    Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells. Five truncated Apoptin proteins were analyzed to determine their selective ability to migrate into the nucleus of human breast adenocarcinoma MCF-7 cells for inducing apoptosis.
    Matched MeSH terms: DNA-Binding Proteins; Recombinant Fusion Proteins/genetics; Recombinant Fusion Proteins/isolation & purification; Recombinant Fusion Proteins/metabolism; Recombinant Fusion Proteins/pharmacology; Viral Proteins; Capsid Proteins/genetics*; Capsid Proteins/isolation & purification; Capsid Proteins/metabolism*; Capsid Proteins/pharmacology; Maltose-Binding Proteins/genetics; Maltose-Binding Proteins/metabolism
  8. Low KO, Muhammad Mahadi N, Md Illias R
    Appl. Microbiol. Biotechnol., 2013 May;97(9):3811-26.
    PMID: 23529680 DOI: 10.1007/s00253-013-4831-z
    Escherichia coli-the powerhouse for recombinant protein production-is rapidly gaining status as a reliable and efficient host for secretory expression. An improved understanding of protein translocation processes and its mechanisms has inspired and accelerated the development of new tools and applications in this field and, in particular, a more efficient secretion signal. Several important characteristics and requirements are summarised for the design of a more efficient signal peptide for the production of recombinant proteins in E. coli. General approaches and strategies to optimise the signal peptide, including the selection and modification of the signal peptide components, are included. Several challenges in the secretory production of recombinant proteins are discussed, and research approaches designed to meet these challenges are proposed.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism*; Bacterial Proteins/secretion*; Recombinant Proteins/genetics; Recombinant Proteins/metabolism*; Recombinant Proteins/secretion*
  9. Tan CH, Show PL, Ooi CW, Ng EP, Lan JC, Ling TC
    Biotechnol J, 2015 Jan;10(1):31-44.
    PMID: 25273633 DOI: 10.1002/biot.201400301
    Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided.
    Matched MeSH terms: Bacterial Proteins/isolation & purification; Bacterial Proteins/metabolism; Bacterial Proteins/chemistry; Fungal Proteins/isolation & purification; Fungal Proteins/metabolism; Fungal Proteins/chemistry
  10. Iqbal MJ, Faye I, Samir BB, Said AM
    ScientificWorldJournal, 2014;2014:173869.
    PMID: 25045727 DOI: 10.1155/2014/173869
    Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth.
    Matched MeSH terms: Proteins/chemistry*
  11. Chong YH, Ho GS, Dewitt GF
    Med J Malaya, 1968 Dec;23(2):115-7.
    PMID: 4241496
    Matched MeSH terms: Blood Proteins/analysis*
  12. Subrahmanyam C
    Med J Malaya, 1966 Mar;20(3):234-9.
    PMID: 4223073
    Matched MeSH terms: Hemolysin Proteins/pharmacology*
  13. Kandasamy G, Shaleh SRM
    Bioresour. Technol., 2018 Jan;247:327-331.
    PMID: 28950142 DOI: 10.1016/j.biortech.2017.08.187
    A new approach to recover microalgae from aqueous medium using a bio-flotation method is reported. The method involves utilizing a Moringa protein extract - oil emulsion (MPOE) for flotation removal of Nannochloropsis sp. The effect of various factors has been assessed using this method, including operating parameters such as pH, MPOE dose, algae concentration and mixing time. A maximum flotation efficiency of 86.5% was achieved without changing the pH condition of algal medium. Moreover, zeta potential analysis showed a marked difference in the zeta potential values when increase the MPOE dose concentration. An optimum condition of MPOE dosage of 50ml/L, pH 8, mixing time 4min, and a flotation efficiency of greater than 86% was accomplished. The morphology of algal flocs produced by protein-oil emulsion flocculant were characterized by microscopy. This flotation method is not only simple, but also an efficient method for harvesting microalgae from culture medium.
    Matched MeSH terms: Proteins*
  14. Abu ML, Nooh HM, Oslan SN, Salleh AB
    BMC Biotechnol., 2017 Nov 10;17(1):78.
    PMID: 29126403 DOI: 10.1186/s12896-017-0397-7
    BACKGROUND: Pichia guilliermondii was found capable of expressing the recombinant thermostable lipase without methanol under the control of methanol dependent alcohol oxidase 1 promoter (AOXp 1). In this study, statistical approaches were employed for the screening and optimisation of physical conditions for T1 lipase production in P. guilliermondii.

    RESULT: The screening of six physical conditions by Plackett-Burman Design has identified pH, inoculum size and incubation time as exerting significant effects on lipase production. These three conditions were further optimised using, Box-Behnken Design of Response Surface Methodology, which predicted an optimum medium comprising pH 6, 24 h incubation time and 2% inoculum size. T1 lipase activity of 2.0 U/mL was produced with a biomass of OD600 23.0.

    CONCLUSION: The process of using RSM for optimisation yielded a 3-fold increase of T1 lipase over medium before optimisation. Therefore, this result has proven that T1 lipase can be produced at a higher yield in P. guilliermondii.

    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism*; Bacterial Proteins/chemistry; Recombinant Proteins/genetics; Recombinant Proteins/metabolism*; Recombinant Proteins/chemistry
  15. Marlia M. Hanafiah, Nan Hamiza Syazira Megat Mohamad, Nur Izzah Hamna Abd. Aziz
    Sains Malaysiana, 2018;47:1625-1634.
    Akumulasi logam berat dan bahan pencemar ke dalam ekosistem akuatik memberi impak negatif kepada alam sekitar dan organisma akuatik. Salvinia molesta dan Pistia stratiotes merupakan spesies yang mempunyai kadar pertumbuhan yang cepat dan berkemampuan dalam mengakumulasi logam berat dan menyerap nutrien menjadikan ia sesuai digunakan untuk merawat air sisa melalui kaedah bioteknologi iaitu fitoremediasi. Kajian ini dijalankan untuk menentukan kualiti air sisa kumbahan sebelum dan selepas rawatan menggunakan kaedah fitoremediasi. Selain itu, objektif kajian ini juga adalah untuk menilai keberkesanan Salvinia molesta dan Pistia stratiotes sebagai agen fitoremediasi bagi rawatan air sisa. Sampel tumbuhan akuatik berbeza berat iaitu 10, 20 dan 30 g diuji untuk rawatan tersebut. Ujian ANOVA satu hala menunjukkan perbezaan kadar pengurangan jumlah pepejal terampai dan ammoniakal nitrogen yang bererti (p<0.05) bagi 10, 20 dan 30 g Pistia stratiotes dan Salvinia molesta sepanjang kajian dijalankan iaitu daripada hari 0 sehingga hari ke-7. Keputusan kajian juga menunjukkan 30 dan 20 g Pistia stratiotes dan Salvinia molesta dapat menyingkirkan jumlah pepejal terampai dan ammoniakal nitrogen dengan lebih cepat berbanding berat tumbuhan 10 g. Ujian ANOVA satu hala juga tidak menunjukkan perbezaan yang bererti bagi kadar pengurangan jumlah pepejal terampai dan ammoniakal nitrogen antara Pistia stratiotes dan Salvinia molesta.
    Matched MeSH terms: Nerve Tissue Proteins; RNA-Binding Proteins
  16. Wahab AFFA, Abdul Karim NA, Ling JG, Hasan NS, Yong HY, Bharudin I, et al.
    Protein Expr. Purif., 2019 02;154:52-61.
    PMID: 30261309 DOI: 10.1016/j.pep.2018.09.014
    Cellobiohydrolases catalyze the processive hydrolysis of cellulose into cellobiose. Here, a Trichoderma virens cDNA predicted to encode for cellobiohydrolase (cbhI) was cloned and expressed heterologously in Aspergillus niger. The cbhI gene has an open reading frame of 1518 bp, encoding for a putative protein of 505 amino acid residues with a calculated molecular mass of approximately 54 kDa. The predicted CbhI amino acid sequence has a fungal type carbohydrate binding module separated from a catalytic domain by a threonine rich linker region and showed high sequence homology with glycoside hydrolase family 7 proteins. The partially purified enzyme has an optimum pH of 4.0 with stability ranging from pH 3.0 to 6.0 and an optimum temperature of 60 °C. The partially purified CbhI has a specific activity of 4.195 Umg-1 and a low Km value of 1.88 mM when p-nitrophenyl-β-D-cellobioside (pNPC) is used as the substrate. The catalytic efficiency (kcat/Km) was 5.68 × 10-4 mM-1s-1, which is comparable to the CbhI enzymes from Trichoderma viridae and Phanaerochaete chrysosporium. CbhI also showed activity towards complex substrates such as Avicel (0.011 Umg-1), which could be useful in complex biomass degradation. Interestingly, CbhI also exhibited a relatively high inhibition constant (Ki) for cellobiose with a value of 8.65 mM, making this enzyme more resistant to end-product inhibition compared to other fungal cellobiohydrolases.
    Matched MeSH terms: Recombinant Proteins/biosynthesis; Recombinant Proteins/genetics; Recombinant Proteins/isolation & purification; Recombinant Proteins/chemistry
  17. Kamarudin NH, Rahman RN, Ali MS, Leow TC, Basri M, Salleh AB
    Protein J., 2014 Jun;33(3):296-307.
    PMID: 24777627 DOI: 10.1007/s10930-014-9560-3
    The gene encoding a cold-adapted, organic solvent stable lipase from a local soil-isolate, mesophilic Staphylococcus epidermidis AT2 was expressed in a prokaryotic system. A two-step purification of AT2 lipase was achieved using butyl sepharose and DEAE sepharose column chromatography. The final recovery and purification fold were 47.09 % and 3.45, respectively. The molecular mass of the purified lipase was estimated to be 43 kDa. AT2 lipase was found to be optimally active at pH 8 and stable at pH 6-9. Interestingly, this enzyme demonstrated remarkable stability at cold temperature (<30 °C) and exhibited optimal activity at a temperature of 25 °C. A significant enhancement of the lipolytic activity was observed in the presence of Ca(2+), Tween 60 and Tween 80. Phenylmethylsulfonylfluoride, a well known serine inhibitor did not cause complete inhibition of the enzymatic activity. AT2 lipase exhibited excellent preferences towards long chain triglycerides and natural oils. The lipolytic activity was stimulated by dimethylsulfoxide and diethyl ether, while more than 50 % of its activity was retained in methanol, ethanol, acetone, toluene, and n-hexane. Taken together, AT2 lipase revealed highly attractive biochemical properties especially because of its stability at low temperature and in organic solvents.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/isolation & purification; Bacterial Proteins/metabolism; Bacterial Proteins/chemistry*; Recombinant Proteins/genetics; Recombinant Proteins/isolation & purification; Recombinant Proteins/metabolism; Recombinant Proteins/chemistry*
  18. Arifin N, Basuni M, Lan CA, Yahya AR, Noordin R
    Protein J., 2010 Oct;29(7):509-15.
    PMID: 20845068 DOI: 10.1007/s10930-010-9281-1
    This paper describes a refinement in the purification step that facilitated the downstream recovery of high purity BmR1 recombinant protein, which is a protein used as a test reagent in the commercialized rapid tests for detection of lymphac filariasis i.e. Brugia Rapid™ and panLF rapid™. Purification was performed by immobilized metal affinity chromatography (IMAC), followed by ion exchange chromatography (IEX). Results showed that a total of 10.27 mg of BmR1 was obtained when IMAC was performed using 20 mM of imidazole and 5 column volume of wash buffer containing 500 mM of NaCl. Purity of the target protein was enhanced when buffer at pH 5.8 was used during the IEX. Two proteins that recurrently appeared below the BmR1 recombinant protein were identified by mass-spectrometry analysis as the same protein, thus they were probably degradation products of BmR1. These strategies improve purity of the target protein to be used in applications such as production of aptamers and monoclonal antibodies.
    Matched MeSH terms: Recombinant Proteins/genetics; Recombinant Proteins/isolation & purification; Recombinant Proteins/metabolism; Recombinant Proteins/chemistry; Helminth Proteins/genetics; Helminth Proteins/isolation & purification*; Helminth Proteins/metabolism; Helminth Proteins/chemistry
  19. Al-Joudi FS, Iskandar ZA, Imran AK
    Med. J. Malaysia, 2007 Mar;62(1):6-8.
    PMID: 17682561 MyJurnal
    Survivin is a 16.5-kDa intracellular protein also known as AP14 or BIRC5. It inhibits apoptosis and regulates cell division and belongs to the inhibitors of apoptosis (IAP) gene family. In the majority of neoplasms investigated for survivin expression, high levels of the IAP proteins were predictive of tumour progression, either in terms of disease-free survival or overall survival, thus providing significant prognostic information. Hence, the prognostic value of survivin expression in tumour masses of invasive ductal carcinoma has been investigated. It was found that negative and low expression of survivin correlated significantly with favourable outcomes. Conversely, high expression correlated with unfavourable outcomes. The five-year survival rate was higher among the cases with low and negative survivin expression, compared to those with higher survivin expression. However, this correlation was found to be insignificant statistically. Furthermore, a statistical model has been devised to explain the combined effects of survivin expression and its sub-cellular localisation, p-53 expression and lymph nodal involvement, on the outcomes of these patients.
    Matched MeSH terms: Microtubule-Associated Proteins/analysis*; Microtubule-Associated Proteins/antagonists & inhibitors; Neoplasm Proteins/analysis*; Neoplasm Proteins/antagonists & inhibitors; Inhibitor of Apoptosis Proteins
  20. Tee CS, Marziah M, Tan CS, Abdullah MP
    Plant Cell Rep., 2003 Jan;21(5):452-8.
    PMID: 12789448
    Three different morphological callus types, identified as type A, B and C, and tips of in vitro inflorescences were used as target tissues for genetic transformation. Five different DNA plasmids carrying a synthetic green fluorescent protein (gfp) gene driven by different promoters, CaMV 35S, HBT, and Ubi1 were tested for the genetic transformation of Dendrobium Sonia 17. 35S-sgfp-TYG-nos (p35S) with the CaMV 35S promoter showed the highest GFP transient expression rate, while the HBT and Ubi1 promoters showed a relatively lower expression rate in all of the target tissues tested. The highest number of GFP-expressing cells was observed on day 2 post-bombardment, and the number declined gradually over the course of the next 2 weeks. Type A and B callus were found to be the best potential target tissues for genetic transformation.
    Matched MeSH terms: Luminescent Proteins/genetics; Luminescent Proteins/metabolism; Recombinant Fusion Proteins/genetics; Recombinant Fusion Proteins/metabolism; Green Fluorescent Proteins
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links