Affiliations 

  • 1 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
  • 2 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
  • 3 Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • 4 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. Electronic address: m-goto@mail.cstm.kyushu-u.ac.jp
Food Chem, 2023 Dec 15;429:136911.
PMID: 37478610 DOI: 10.1016/j.foodchem.2023.136911

Abstract

Flavonoids have diverse beneficial roles that potentiate their application as nutraceutical agents in nutritional supplements and as natural antimicrobial agents in food preservation. To address poor solubility and bioactivity issues, we developed water-soluble micellar formulations loaded with single and multiple flavonoids using the biocompatible surface-active ionic liquid choline oleate. The food preservation performance was investigated using luteolin, naringenin, and quercetin as model bioactive compounds. The micellar formulations formed spherical micelles with particle sizes of <150 nm and exhibited high aqueous solubility (>5.15 mg/mL). Co-delivery of multiple flavonoids (luteolin, naringenin, and quercetin in LNQ-MF) resulted in 84.85% antioxidant activity at 100 μg/mL. The effects on Staphylococcus aureus and Salmonella enterica were synergistic with fractional inhibitory concentration indices of 0.87 and 0.71, respectively. LNQ-MF hindered the growth of S. aureus in milk (0.83-0.89 log scale) compared to the control. Co-delivered encapsulated flavonoids are a promising alternative to chemical preservatives.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.