Affiliations 

  • 1 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
  • 2 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
  • 3 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
  • 4 Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • 5 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. Electronic address: m-goto@mail.cstm.kyushu-u.ac.jp
Int J Pharm, 2019 Jun 30;565:219-226.
PMID: 31077761 DOI: 10.1016/j.ijpharm.2019.05.020

Abstract

In order to prevent common hypersensitivity reactions to paclitaxel injections (Taxol), we previously reported an ionic liquid-mediated paclitaxel (IL-PTX) formulation with small particle size and narrow size distribution. The preliminary work showed high PTX solubility in the IL, and the formulation demonstrated similar antitumor activity to Taxol, while inducing a smaller hypersensitivity effect in in vitro cell experiments. In this study, the stability of the IL-PTX formulation was monitored by quantitative HPLC analysis, which showed that IL-PTX was more stable at 4 °C than at room temperature. The in vivo study showed that the IL-PTX formulation could be used in a therapeutic application as a biocompatible component of a drug delivery system. To assess the in-vivo biocompatibility, IL or IL-mediated formulations were administered intravenously by maintaining physiological buffered conditions (neutral pH and isotonic salt concentration). From in vivo pharmacokinetics data, the IL-PTX formulation was found to have a similar systemic circulation time and slower elimination rate compared to cremophor EL mediated paclitaxel (CrEL-PTX). Furthermore, in vivo antitumor and hypersensitivity experiments in C57BL/6 mice revealed that IL-PTX had similar antitumor activity to CrEL-PTX, but a significantly smaller hypersensitivity effect compared with CrEL-PTX. Therefore, the IL-mediated formulation has potential to be an effective and safe drug delivery system for PTX.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.