Affiliations 

  • 1 Department of Emergency Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nan Ya South Rd, Banqiao Dist, New Taipei City, Taiwan
  • 2 Department of Emergency Medicine, Seoul National University College of Medicine and Hospital, Seoul, South Korea
  • 3 Department of Traumatology and Critical Care, National Taiwan University Hospital, Taipei, Taiwan
  • 4 Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
  • 5 Faculty of Medicine, Universiti Teknologi MARA, Malaysia
  • 6 Center for Emergency Medicine, Bach Mai Hospital, Hanoi, Viet Nam
  • 7 Emergency Medicine, Sri Ramachandra Medical College, Chennai, India
  • 8 Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Emergency Medicine, National Taiwan University Hospital, Yun-Lin Branch, Taipei, Taiwan. Electronic address: drchiang.tw@gmail.com
  • 9 Department of Emergency Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nan Ya South Rd, Banqiao Dist, New Taipei City, Taiwan; Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, Yilan, Taiwan. Electronic address: tangtang05231980@hotmail.com
  • 10 Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Emergency Medicine, National Taiwan University Hospital, Yun-Lin Branch, Taipei, Taiwan
J Formos Med Assoc, 2024 Jan;123(1):23-35.
PMID: 37573159 DOI: 10.1016/j.jfma.2023.07.011

Abstract

BACKGROUND/PURPOSE: To develop a prediction model for emergency medical technicians (EMTs) to identify trauma patients at high risk of deterioration to emergency medical service (EMS)-witnessed traumatic cardiac arrest (TCA) on the scene or en route.

METHODS: We developed a prediction model using the classical cross-validation method from the Pan-Asia Trauma Outcomes Study (PATOS) database from 1 January 2015 to 31 December 2020. Eligible patients aged ≥18 years were transported to the hospital by the EMS. The primary outcome (EMS-witnessed TCA) was defined based on changes in vital signs measured on the scene or en route. We included variables that were immediately measurable as potential predictors when EMTs arrived. An integer point value system was built using multivariable logistic regression. The area under the receiver operating characteristic (AUROC) curve and Hosmer-Lemeshow (HL) test were used to examine discrimination and calibration in the derivation and validation cohorts.

RESULTS: In total, 74,844 patients were eligible for database review. The model comprised five prehospital predictors: age <40 years, systolic blood pressure <100 mmHg, respiration rate >20/minute, pulse oximetry <94%, and levels of consciousness to pain or unresponsiveness. The AUROC in the derivation and validation cohorts was 0.767 and 0.782, respectively. The HL test revealed good calibration of the model (p = 0.906).

CONCLUSION: We established a prediction model using variables from the PATOS database and measured them immediately after EMS personnel arrived to predict EMS-witnessed TCA. The model allows prehospital medical personnel to focus on high-risk patients and promptly administer optimal treatment.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.