Affiliations 

  • 1 Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
  • 2 Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
  • 3 School of Biological Sciences, University Sains Malaysia, Minden, 11800, Penang, Malaysia; Center for Chemical Biology, University Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
  • 4 Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address: xgwu@shou.edu.cn
PMID: 37852318 DOI: 10.1016/j.cbpa.2023.111535

Abstract

The 1-acylglycerol-3-phosphate acyltransferase (AGPAT) acts as a crucial enzyme in the process of triacylglycerol (TAG) synthesis, enabling the acylation of lysophosphatidic acid (LPA) into phosphatidic acid (PA). In order to decode the distinctive roles of AGPAT isoforms in the TAG production pathway, three AGPAT isoforms were detected for the first time in the Chinese mitten crab Eriocheir sinensis (Es-agpat2, Es-agpat3, and Es-agpat4). The mRNA levels of Es-agpat2 and Es-agpat4 demonstrated a conspicuous presence in the hepatopancreas, with subsequent high levels in the heart, muscle, and thoracic ganglion. On the other hand, the thoracic ganglion exhibited abundant levels of Es-agpat3, while other tissues recorded relatively low expression levels. Observing the molting cycle of E. sinensis, the hepatopancreas showed minimum expression levels of Es-agpat2 and Es-agpat4 at stage A/B. A peak at stage C was noted, which was then followed by a gradual drop until stage E. For the ovarian development cycle, stage II witnessed the maximum expression level of Es-agpat2 and Es-agpat4, succeeded by a sharp fall in stage III. After this, there was an increasing trend from stage III up to stage V. Expression of Es-agpat3 in the hepatopancreas was consistently lower than Es-agpat2 and Es-agpat4 during either the molting or ovarian development. However, in terms of ovarian expression, Es-agpat3 outperformed Es-agpat2 and Es-agpat4. It exhibited a steep increase in expression, peaking at stage II and subsequently diminishing. In situ hybridization (ISH) revealed that in stages II and IV hepatopancreas, Es-agpat4-mRNA was primarily located in fibrillar cells (F cell) and resorptive cells (R cell), with no signal from Es-agpat3. During stage II of ovarian development, both Es-agpat3-mRNA and Es-agpat4-mRNA were located in the cytoplasm of previtellogenic oocyte (PRO) and endogenous vitellogenic oocyte (EN), with no expression at stage IV. Additionally, the silencing of Es-agpat2 and Es-agpat4 caused a downward trend in the expression levels of all subsequent genes in the E. sinensis TAG synthesis pathway. To sum up, these findings suggest that the three Es-agpats may have unique functions in TAG synthesis during either the molting process or ovarian maturation of E. sinensis.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.