Affiliations 

  • 1 College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
  • 2 Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
  • 3 College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China. Electronic address: zhengyh@njau.edu.cn
  • 4 College of Biological and Environmental Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Wanli University, Ningbo 315100, PR China. Electronic address: shifengcao1@gmail.com
Food Chem, 2024 Jun 15;443:138545.
PMID: 38306904 DOI: 10.1016/j.foodchem.2024.138545

Abstract

The effects of exogenous glutamate treatment on the quality attributes, γ-aminobutyric acid (GABA) shunt, phenylpropanoid pathway, and antioxidant capacity of fresh-cut carrots were investigated. Results showed that glutamate treatment suppressed the increases in lightness and whiteness values, inhibited the degradation of total carotenoids and maintained better flavor and taste in fresh-cut carrots. Moreover, glutamate treatment rapidly promoted the activities of glutamate decarboxylase and GABA transaminase, thus improving the GABA content. It also significantly enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate coenzyme A ligase and promoted the accumulation of total phenolics as well as the main individual phenolic compounds, including chlorogenic and caffeic acid. In addition, glutamate application activated the reactive oxygen system-related enzyme including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase activities to maintain higher antioxidant capacity in fresh-cut carrots. These results demonstrated that exogenous glutamate treatment maintained better nutritional quality and alleviated color deterioration by accelerating the accumulation of GABA and phenolics and enhancing the antioxidant capacity in fresh-cut carrots.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.