Affiliations 

  • 1 Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
  • 2 Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China. Electronic address: linhaishu@sztu.edu.cn
  • 3 Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Malaysia. Electronic address: paul.ho@monash.edu
Int J Pharm, 2024 Apr 10;654:123945.
PMID: 38403088 DOI: 10.1016/j.ijpharm.2024.123945

Abstract

This study aimed to develop an innovative dosage form for 10-hydroxycamptothecin (HCPT), a chemotherapeutic agent with limited aqueous solubility and stability, to enhance its parenteral delivery and targeting to hepatic cancer. We formulated HCPT into a nanoemulsion using tributyrin, a dietary component with histone deacetylase inhibitor activity. The resulting HCPT-loaded tributyrin nanoemulsion (Tri-HCPT-E) underwent extensive evaluations. Tri-HCPT-E significantly improved the aqueous solubility, stability, and anti-cancer activities in HepG2 cells. Pharmacokinetic studies confirmed the increased stability and hepatic targeting, with Tri-HCPT-E leading to a 120-fold increase in plasma exposure of intact HCPT and a 10-fold increase in hepatic exposure compared to the commercial free solution. Co-administration of 17α-ethynylestradiol, an up-regulator of low-density lipoprotein (LDL) receptor, further enhanced the distribution and metabolism of HCPT, demonstrating an association between the LDL receptor pathway and hepatic targeting. Most importantly, Tri-HCPT-E exhibited superior in vivo anti-cancer efficacy in a mouse xenograft model compared to the commercial formulation, without causing escalated hepatic or renal toxicity. In conclusion, formulating HCPT into a nanoemulsion with tributyrin has proven to be an innovative and effective strategy for targeted hepatic cancer chemotherapy while tributyrin, a pharmacologically active dietary component, has emerged as a promising functional excipient for drug delivery.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.