Affiliations 

  • 1 School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
  • 2 School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia. hslim@usm.my
PMID: 38662294 DOI: 10.1007/s11356-024-33305-x

Abstract

Forest fires are sudden, destructive, hazardous, and challenging to manage and rescue, earning them a place on UNESCO's list of the world's eight major natural disasters. Currently, amid global warming, all countries worldwide have entered a period of high forest fire incidence. Due to global warming, the frequency of forest fires has accelerated, the likelihood of large fires has increased, and the spatial and temporal dynamics of forest fires have shown different trends. Therefore, the impact of climate change on the spatiotemporal dynamics of forest fires has become a hot issue in the field of forest fire research in recent years. Therefore, it is of great significance and necessity to conduct a review of the research in this area. This review delves into the interactions and impacts between climate change and the spatiotemporal dynamics of forest fires. To address this issue, scholars have mainly adopted the following research methods: first, statistical analysis methods, second, the establishment of spatiotemporal prediction models for meteorology and forest fires, and third, the coupling of climate models with forest fire risk forecasting models. The statistical analysis method relies on the analysis of historical meteorological and fire-related data to study the effects of climate change and meteorological factors on fire occurrence. Meanwhile, forest fire prediction models utilize technical tools such as remote sensing. These models synthesize historical meteorological and fire-related data, incorporating key meteorological factors such as temperature, rainfall, relative humidity, and wind. The models revealed the spatial and temporal distribution patterns of fires, identified key drivers, and explored the interactions between climate change and forest fire dynamics, culminating in the construction of predictive models. With the deepening of the study, the coupling of climate models and fire risk ranking systems became a trend in the prediction of forest fire risk trends. Moreover, as the climate warms, the increased frequency of extreme weather events like heatwaves, droughts, snow and ice storms, and El Niño-Southern Oscillation (ENSO) has accelerated forest fire occurrences and raised the risk of major fires. This review offers valuable technical insights by comprehensively analyzing the spatial and temporal characteristics of forest fires, elucidating key meteorological drivers, and exploring potential mechanisms. These insights serve as a scientific foundation for preventive measures and effective forest fire management. In the face of a changing climate, this synthesis contributes to the development of informed strategies to mitigate the escalating threat of forest fires.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.