Influenced by urban expansion, population growth, and various socio-economic activities, land use in the Yangtze River Delta (YRD) area has undergone prominent changes. Modifications in land use have resulted in adjustments to ecological structures, leading to subsequent fluctuations in carbon storage. This study focuses on YRD region and analyzes the characteristics of land use changes in the area using land use data from 2000 to 2020, with a 10-year interval. Utilizing InVEST Model's Carbon Storage module in combination with PLUS model (patch-generating land use simulation), we simulated and projected future land use patterns and carbon storage across YRD region under five scenarios including natural development (ND), urban development (UD), ecological protection (EP), cropland protection (CP), and balanced development (BD). Upon comparing carbon storage levels predicted for 2030 under the five scenarios with those in 2020, carbon stocks decrease in the initial four scenarios and then increase in the fifth scenario. In the initial four declining scenarios, CP scenario had the least reduction in carbon storage, followed by EP scenario. The implementation of policies aimed at safeguarding cropland and preserving ecological integrity can efficaciously curtail the expansion of developed land into woodland and cropland, enhance the structure of land use, and mitigate the loss of carbon storage.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.