Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Shi J, Khoo Z
    Front Psychol, 2023;14:1092884.
    PMID: 37057164 DOI: 10.3389/fpsyg.2023.1092884
    BACKGROUND: A key research question with theoretical and practical implications is to investigate the various conditions by which social network sites (SNS) may either enhance or interfere with mental well-being, given the omnipresence of SNS and their dual effects on well-being.

    METHOD/PROCESS: We study SNS' effects on well-being by accounting for users' personal (i.e., self-disclosure) and situational (i.e., social networks) attributes, using a mixed design of content analysis and social network analysis.

    RESULT/CONCLUSION: We compare users' within-person changes in self-disclosure and social networks in two phases (over half a year), drawing on Weibo Depression SuperTalk, an online community for depression, and find: ① Several network attributes strengthen social support, including network connectivity, global efficiency, degree centralization, hubs of communities, and reciprocal interactions. ② Users' self-disclosure attributes reflect positive changes in mental well-being and increased attachment to the community. ③ Correlations exist between users' topological and self-disclosure attributes. ④ A Poisson regression model extracts self-disclosure attributes that may affect users' received social support, including the writing length, number of active days, informal words, adverbs, negative emotion words, biological process words, and first-person singular forms.

    INNOVATION: We combine social network analysis with content analysis, highlighting the need to understand SNS' effects on well-being by accounting for users' self-disclosure (content) and communication partners (social networks).

    IMPLICATION/CONTRIBUTION: Authentic user data helps to avoid recall bias commonly found in self-reported data. A longitudinal within-person analysis of SNS' effects on well-being is helpful for policymakers in public health intervention, community managers for group organizations, and users in online community engagement.

  2. Shi J, Khoo Z
    Front Psychol, 2023;14:1227123.
    PMID: 37829080 DOI: 10.3389/fpsyg.2023.1227123
    PURPOSE/SIGNIFICANCE: Humans understand, think, and express themselves through metaphors. The current paper emphasizes the importance of identifying the metaphorical language used in online health communities (OHC) to understand how users frame and make sense of their experiences, which can boost the effectiveness of counseling and interventions for this population.

    METHODS/PROCESS: We used a web crawler to obtain a corpus of an online depression community. We introduced a three-stage procedure for metaphor identification in a Chinese Corpus: (1) combine MIPVU to identify metaphorical expressions (ME) bottom-up and formulate preliminary working hypotheses; (2) collect more ME top-down in the corpus by performing semantic domain analysis on identified ME; and (3) analyze ME and categorize conceptual metaphors using a reference list. In this way, we have gained a greater understanding of how depression sufferers conceptualize their experience metaphorically in an under-represented language in the literature (Chinese) of a new genre (online health community).

    RESULTS/CONCLUSION: Main conceptual metaphors for depression are classified into PERSONAL LIFE, INTERPERSONAL RELATIONSHIP, TIME, and CYBERCULTURE metaphors. Identifying depression metaphors in the Chinese corpus pinpoints the sociocultural environment people with depression are experiencing: lack of offline support, social stigmatization, and substitutability of offline support with online support. We confirm a number of depression metaphors found in other languages, providing a theoretical basis for researching, identifying, and treating depression in multilingual settings. Our study also identifies new metaphors with source-target connections based on embodied, sociocultural, and idiosyncratic levels. From these three levels, we analyze metaphor research's theoretical and practical implications, finding ways to emphasize its inherent cross-disciplinarity meaningfully.

  3. Shi J, Sun J, Hu N, Hu Y
    Infect Genet Evol, 2020 11;85:104442.
    PMID: 32622923 DOI: 10.1016/j.meegid.2020.104442
    Little is known about the genetic features of Nipah virus (NiV) associated with virulence and transmission. Herein, phylogenetic and genetic analyses for all available NiV strains revealed sequence variations between the two genetic lineages of NiV with pathogenic differences, as well as among different strains within Bangladesh lineage. A total of 143 conserved amino acid differences, distributed among viral nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F) and glycoprotein (G), were revealed. Structural modeling revealed one key substitution (S3554N) in the viral G protein that might mediate a 12-amino-acid structural change from a loop into a β sheet. Multiple key amino acids substitutions in viral G protein were observed, which may alter viral fitness and transmissibility from bats to humans.
  4. Zhang Y, Shi J, Tan C, Liu Y, Xu YJ
    Food Res Int, 2023 Nov;173(Pt 1):113301.
    PMID: 37803609 DOI: 10.1016/j.foodres.2023.113301
    Oil is one of three nutritious elements. The application of omics techniques in the field of oil science and technology is attracted increasing attention. Oilomics, which emerged as an important branch of foodomics, has been widely used in various aspects of oil science and technology. However, there are currently no articles systematically reviewing the application of oilomics. This paper aims to provide a critical overview of the advantages and value of oilomics technology compared to traditional techniques in various aspects of oil science and technology, including oil nutrition, oil processing, oil quality, safety, and traceability. Moreover, this article intends to review major issues in oilomics and give a comprehensive, critical overview of the current state of the art, future challenges and trends in oilomics, with a view to promoting the optimal application and development of oilomics technology in oil science and technology.
  5. Wang Y, Shi J, Xu YJ, Tan CP, Liu Y
    Food Chem, 2024 Apr 16;438:137400.
    PMID: 38039864 DOI: 10.1016/j.foodchem.2023.137400
    The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.
  6. Lou Y, Shi J, Guo D, Qureshi AK, Song L
    Saudi J Biol Sci, 2017 May;24(4):803-807.
    PMID: 28490949 DOI: 10.1016/j.sjbs.2015.06.025
    Human glioma is a highly fatal tumor with a significant feature of immune suppression. The functions of PD-L1 refer to co-simulation and immune regulation. To investigate expression and functional activity of PD-L1 in human glioma cell in vivo and in vitro. Expressions of PD-L1mRNA and protein in the human glioma cell line were analyzed with quantitative RT-PCR and flow cytometer; and then expression of PD-L1 in tissue specimens of 10 glioma patients was treated with immunohistochemical analysis; glioma cell and allogeneic CD4+ and CD8+ T cells were co-cultured, and cytokine IFN-γ, IL-2 and IL-10 in cultured supernatant fluid were determined with ELISA; upon blocking the interaction between glioma cell and the immune cell with PD-L1 monoclonal antibody (5H1), surface markers on immune cells were analyzed using flow cytometer. All human glioma cell lines constitutively expressed PD-L1, and IFN-γ induced glioma cell to highly express PD-L1. It was shown through immunohistochemical analysis that glioma specimen expressed PD-L1, while expression of PD-L1 was not observed in normal tissue and normal human brain near the tumor location. The release of IFN-γ and IL-2 was inhibited, while IL-10 was increased slightly. Glioma cell may escape from immune recognition and injury with the help of PD-L1, which is a significant pathogenic mechanism of glioma.
  7. Zhou J, Johnson VC, Shi J, Tan ML, Zhang F
    PLoS One, 2025;20(1):e0316255.
    PMID: 39854555 DOI: 10.1371/journal.pone.0316255
    Influenced by urban expansion, population growth, and various socio-economic activities, land use in the Yangtze River Delta (YRD) area has undergone prominent changes. Modifications in land use have resulted in adjustments to ecological structures, leading to subsequent fluctuations in carbon storage. This study focuses on YRD region and analyzes the characteristics of land use changes in the area using land use data from 2000 to 2020, with a 10-year interval. Utilizing InVEST Model's Carbon Storage module in combination with PLUS model (patch-generating land use simulation), we simulated and projected future land use patterns and carbon storage across YRD region under five scenarios including natural development (ND), urban development (UD), ecological protection (EP), cropland protection (CP), and balanced development (BD). Upon comparing carbon storage levels predicted for 2030 under the five scenarios with those in 2020, carbon stocks decrease in the initial four scenarios and then increase in the fifth scenario. In the initial four declining scenarios, CP scenario had the least reduction in carbon storage, followed by EP scenario. The implementation of policies aimed at safeguarding cropland and preserving ecological integrity can efficaciously curtail the expansion of developed land into woodland and cropland, enhance the structure of land use, and mitigate the loss of carbon storage.
  8. He M, Nian B, Shi J, Sun X, Du R, Tan CP, et al.
    Food Funct, 2022 Jan 04;13(1):270-279.
    PMID: 34888592 DOI: 10.1039/d1fo01507a
    Extraction technology can influence the vegetable oil functional quality. Polyphenols in rapeseed oil have been proved to be beneficial for cardiovascular health. In this study, we evaluated the effect of extraction methods on the functional quality of rapeseed oil from the perspective of phenolic compounds. The results showed that hot pressing produces the highest amount of phenolic compounds in rapeseed oil. Its most abundant phenolic compound, sinapine (9.18 μg g-1), showed the highest activity in inhibiting anaerobic choline metabolism with an EC50 value of 1.9 mM, whose downstream products are related to cardiovascular diseases. Molecular docking and molecular dynamics (MD) simulations revealed that sinapine exhibits good binding affinity toward CutC, and CutC-sinapine is a stable complex with fewer conformational fluctuations and similar tightness. Taken together, hot pressing can be considered the best extraction method for rapeseed oil from the perspective of phenolic compounds.
  9. Liu B, Yang L, Shi J, Zhang S, Yalçınkaya Ç, Alshalif AF
    Environ Pollut, 2023 Jan 15;317:120839.
    PMID: 36493937 DOI: 10.1016/j.envpol.2022.120839
    Stabilizing/solidificating municipal solid waste incineration fly ash (MIFA) with cement is a common strategy, and it is critical to study the high-value utilization of MIFA in ordinary Portland cement (OPC) components. With this aim, binary-binding-system mortar was produced by partially replacing OPC (∼50%) with MIFA, and the effects of different curing regimes (steam curing and carbonation curing) on the properties of the cement mortar were studied. The results showed that the setting time of the cement paste was shorten with the increase of MIFA content, and steam curing accelerated the hardening of the mixture. Although the incorporation of MIFA reduced the strength of the mortar, compared to conventional curing method, steam curing and carbonation curing increased the 3-d strength of the mortar. For high-volume MIFA mortars, the CO2-cured samples had the highest long-term strength and lowest permeability. The incorporation of MIFA increased the initial porosity of the mortar, thereby significantly increasing the carbonation degree and crystallinity of the reaction product - CaCO3. Steam curing also further narrowed the difference in the hydration degree between MIFA-modified sample and plain paste, which may be due to the enhanced hydraulic reactivity of MIFA at high temperatures. Although the incorporation of MIFA increased the porosity of the mortar, this waste-derived SCM refined the bulk pore structure and decreased the interconnected porosity. Additionally, the heavy metal leaching contents of MIFA-modified mortars were all below 1%, which meet the requirements of Chinese standards. Compared with standard curing, steam curing and carbonation curing made the early-age and long-term performance of MIFA-modified mortar better, which can promote the efficient application of MIFA in OPC products.
  10. Ding Z, Jiang F, Shi J, Wang Y, He M, Tan CP, et al.
    Mol Nutr Food Res, 2023 Jan;67(2):e2200508.
    PMID: 36382382 DOI: 10.1002/mnfr.202200508
    SCOPE: Molecular networking (MN) analysis intends to provide chemical insight of untargeted mass spectrometry (MS) data to the user's underlying biological questions. Foodomics is the study of chemical compounds in food using advanced omics methods. In this study, an MS-MN-based foodomics approach is developed to investigate the composition and anti-obesity activity of cannabinoids in hemp oil.

    METHODS AND RESULTS: A total of 16 cannabinoids are determined in optimized microwave pretreatment of hemp oil using the developed approach. Untargeted metabolomics analysis reveals that cannabinoid extract (CE) and its major constituent (cannabidiol, CBD), can alleviate high glucose-induced increases in lipids and carbohydrates, and decreases in amino acid and nucleic acid. Moreover, CE and CBD are also found to suppress the expression levels of mdt-15, sbp-1, fat-5, fat-6, fat-7, daf-2, and elevate the expression level of daf-1, daf-7, daf-16, sod-3, gst-4, lipl-4, resulting in the decrease of lipid synthesis and the enhance of kinetism. Canonical correspondence analysis (CCA) uncovers strong associations between specific metabolic alterations and gene expression levels.

    CONCLUSION: These findings from this exploratory study offer a new insight into the roles of cannabinoids in the treatment of obesity and related complications.

  11. Liu C, Zhang F, Jim CY, Johnson VC, Tan ML, Shi J, et al.
    Sci Total Environ, 2023 Mar 29;878:163127.
    PMID: 37001663 DOI: 10.1016/j.scitotenv.2023.163127
    Suspended particulate matter (SPM) in the brackish Ebinur Lake of arid northwest China profoundly affect its water quality and watershed habitat quality. However, the actual driving mechanisms of the Lake's SPM changes remain unclear. Therefore, the purpose of this study is to explore the controlling factors driving the variability of SPM in the Ebinur Lake. This study constructed month-by-month SPM maps of Ebinur Lake based on time-series remote-sensing imageries and SPM inversion model. Thirty-four factors that might influence SPM changes were extracted, and the Partial Least Squares Structural Equation Modeling (PLS-SEM), suitable for complex relationships and factor interactions, was applied to identify the relative influence of each factor quantitatively. The results showed: (1) a clear increasing trend of SPM concentration in Ebinur Lake from 2011 to 2020; (2) that SPM changes were influenced by external and internal factors, explaining 48.2 % and 46.9 % of the changes, respectively; (3) that, to the external factors, meteorological factors exerted the greatest influence on SPM (relative contribution of 38.9 %); that, to the internal factors, water salinity imposed the greatest influence on SPM (relative contribution of 43.3 %); (4) that, among the meteorological factors, the measured variable Alashankou wind speed expressed the most significant positive effect on SPM (weighting coefficient of 0.894), and sulfate generated the strongest positive effect on SPM (weighting coefficient of 0.791) among the water salinity factors. Hence, the quantitative identification of drivers of SPM changes in Ebinur Lake could provide a new perspective to investigate the driving mechanisms of lake water quality in arid areas and inform their sustainable restoration and management.
  12. Shen Q, Zeng X, Kong L, Sun X, Shi J, Wu Z, et al.
    Foods, 2023 Apr 01;12(7).
    PMID: 37048306 DOI: 10.3390/foods12071485
    Nitrite is a common color and flavor enhancer in fermented meat products, but its secondary amines may transfer to the carcinogen N-nitrosamines. This review focuses on the sources, degradation, limitations, and alteration techniques of nitrite. The transition among NO3- and NO2-, NH4+, and N2 constitutes the balance of nitrogen. Exogenous addition is the most common source of nitrite in fermented meat products, but it can also be produced by contamination and endogenous microbial synthesis. While nitrite is degraded by acids, enzymes, and other metabolites produced by lactic acid bacteria (LAB), four nitrite reductase enzymes play a leading role. At a deeper level, nitrite metabolism is primarily regulated by the genes found in these bacteria. By incorporating antioxidants, chromogenic agents, bacteriostats, LAB, or non-thermal plasma sterilization, the amount of nitrite supplied can be decreased, or even eliminated. Finally, the aim of producing low-nitrite fermented meat products is expected to be achieved.
  13. Zhao J, Shi J, Chen X, Lei Y, Tian T, Zhu S, et al.
    Mol Omics, 2024 Mar 25;20(3):192-202.
    PMID: 38224158 DOI: 10.1039/d3mo00232b
    Areca nut (Areca catechu L.) is commonly consumed as a chewing food in the Asian region. However, the investigations into the components of areca nut are limited. In this study, we have developed an approach that combines mass spectrometry with feature-based molecular network to explore the chemical characteristics of the areca nut. In comparison to the conventional method, this technique demonstrates a superior capability in annotating unknown compounds present in areca nut. We annotated a total of 52 compounds, including one potential previously unreported alkaloid, one carbohydrate, and one phenol and confirmed the presence of 7 of them by comparing with commercial standards. The validated method was used to evaluate chemical features of areca nut at different growth stages, annotating 25 compounds as potential biomarkers for distinguishing areca nut growth stages. Therefore, this approach offers a rapid and accurate method for the component analysis of areca nut.
  14. Shi J, Zhao J, Zhang Y, Wang Y, Tan CP, Xu YJ, et al.
    Anal Chem, 2023 Dec 26;95(51):18793-18802.
    PMID: 38095040 DOI: 10.1021/acs.analchem.3c03785
    Metabolomics and proteomics offer significant advantages in understanding biological mechanisms at two hierarchical levels. However, conventional single omics analysis faces challenges due to the high demand for specimens and the complexity of intrinsic associations. To obtain comprehensive and accurate system biological information, we developed a multiomics analytical method called Windows Scanning Multiomics (WSM). In this method, we performed simultaneous extraction of metabolites and proteins from the same sample, resulting in a 10% increase in the coverage of the identified biomolecules. Both metabolomics and proteomics analyses were conducted by using ultrahigh-performance liquid chromatography mass spectrometry (UPLC-MS), eliminating the need for instrument conversions. Additionally, we designed an R-based program (WSM.R) to integrate mathematical and biological correlations between metabolites and proteins into a correlation network. The network created from simultaneously extracted biomolecules was more focused and comprehensive compared to those from separate extractions. Notably, we excluded six pairs of false-positive relationships between metabolites and proteins in the network established using simultaneously extracted biomolecules. In conclusion, this study introduces a novel approach for multiomics analysis and data processing that greatly aids in bioinformation mining from multiomics results. This method is poised to play an indispensable role in systems biology research.
  15. Song J, He X, Zhang F, Wang W, Chan NW, Shi J, et al.
    PLoS One, 2024;19(10):e0312388.
    PMID: 39453961 DOI: 10.1371/journal.pone.0312388
    With the rapid economic development of Xinjiang Uygur Autonomous Region (Xinjiang), energy consumption became the primary source of carbon emissions. The growth trend in energy consumption and coal-dominated energy structure are unlikely to change significantly in the short term, meaning that carbon emissions are expected to continue rising. To clarify the changes in energy-related carbon emissions in Xinjiang over the past 15 years, this paper integrates DMSP/OLS and NPP/VIIRS data to generate long-term nighttime light remote sensing data from 2005 to 2020. The data is used to analyze the distribution characteristics of carbon emissions, spatial autocorrelation, frequency of changes, and the standard deviation ellipse. The results show that: (1) From 2005 to 2020, the total carbon emissions in Xinjiang continued to grow, with noticeable urban additions although the growth rate fluctuated. In spatial distribution, non-carbon emission areas were mainly located in the northwest; low-carbon emission areas mostly small and medium-sized towns; and high-carbon emission areas were concentrated around the provincial capital and urban agglomerations. (2) There were significant regional differences in carbon emissions, with clear spatial clustering of energy consumption. The clustering stabilized, showing distinct "high-high" and "low-low" patterns. (3) Carbon emissions in central urban areas remained stable, while higher frequencies of change were seen in the peripheral areas of provincial capitals and key cities. The center of carbon emissions shifted towards southeast but later showed a trend of moving northwest. (4) Temporal and spatial variations in carbon emissions were closely linked to energy consumption intensity, population size, and economic growth. These findings provided a basis for formulating differentiated carbon emission targets and strategies, optimizing energy structures, and promoting industrial transformation to achieve low-carbon economic development in Xinjiang.
  16. Lei J, He Y, Zhu S, Shi J, Tan CP, Liu Y, et al.
    Analyst, 2024 Jan 29;149(3):751-760.
    PMID: 38194259 DOI: 10.1039/d3an01536j
    Polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in the nutritional value of milk lipids. However, a comprehensive analysis of PUFAs and their esters in milk is still scarce. In this study, we developed a novel pseudotargeted lipidomics approach, named SpecLipIDA, for determining PUFA lipids in milk. Triglycerides (TGs) and phospholipids (PLs) were separated using NH2 cartridges, and mass spectrometry data in the information-dependent acquisition (IDA) mode were preprocessed by MS-DIAL, leading to improved identification in subsequent targeted analysis. The target matching algorithm, based on specific lipid cleavage patterns, demonstrated enhanced identification of PUFA lipids compared to the lipid annotations provided by MS-DIAL and GNPS. The approach was applied to identify PUFA lipids in various milk samples, resulting in the detection of a total of 115 PUFA lipids. The results revealed distinct differences in PUFA lipids among different samples, with 44 PUFA lipids significantly contributing to these differences. Our study indicated that SpecLipIDA is an efficient method for rapidly and specifically screening PUFA lipids.
  17. Li X, Zhang F, Shi J, Chan NW, Cai Y, Cheng C, et al.
    Environ Sci Pollut Res Int, 2024 Feb;31(6):9333-9346.
    PMID: 38191729 DOI: 10.1007/s11356-023-31702-2
    As an inland dryland lake basin, the rivers and lakes within the Lake Bosten basin provide scarce but valuable water resources for a fragile environment and play a vital role in the development and sustainability of the local societies. Based on the Google Earth Engine (GEE) platform, combined with the geographic information system (GIS) and remote sensing (RS) technology, we used the index WI2019 to extract and analyze the water body area changes of the Bosten Lake basin from 2000 to 2021 when the threshold value is -0.25 and the slope mask is 8°. The driving factors of water body area changes were also analyzed using the partial least squares-structural equation model (PLS-SEM). The result shows that in the last 20 years, the area of water bodies in the Bosten Lake basin generally fluctuated during the dry, wet, and permanent seasons, with a decreasing trend from 2000 to 2015 and an increasing trend between 2015 and 2019 followed by a steadily decreasing trend afterward. The main driver of the change in wet season water bodies in the Bosten Lake basin is the climatic factors, with anthropogenic factors having a greater influence on the water body area of dry season and permanent season than that of wet season. Our study achieved an accurate and convenient extraction of water body area and drivers, providing up-to-date information to fully understand the spatial and temporal variation of surface water body area and its drivers in the basin, which can be used to effectively manage water resources.
  18. Xu H, Zhang F, Li W, Shi J, Johnson BA, Tan ML
    Environ Monit Assess, 2023 Dec 27;196(1):94.
    PMID: 38150164 DOI: 10.1007/s10661-023-12249-8
    This study analyzed the spatial-temporal change pattern and underlying factors in production-living-ecological space (PLES) of Nanchong City, China, over the past 20 years using historical land use data (2000, 2010, 2020). A land use transfer matrix was calculated from the historical land use maps, and spatial analysis was conducted to analyze changes in the land use dynamics degree, standard deviation ellipse, and center of gravity. The results showed that there was a rapid spatial evolution of the PLES in Nanchong from 2000 to 2010, followed by a stabilization in the second decade. The transfer of ecological-production space occurred mainly in the Jialing and Yilong River basins, while the reduction of production space and the increase of living space were most prominent in the intersection of three districts (Shunqing, Jialing, and Gaoping districts). The return of production-ecological space was observed in the south and northeast of Yingshan, and there was little notable transfer of other types. The distribution of production space in Nanchong evolved in a north-south to east-west trend, with the center of gravity moving from Yilong to Peng'an County. The living space and production space expanded in a north-south direction, and the center of gravity position was in Nanbu, indicating a more balanced growth or decrease in the last 20 years. The changes in the spatial-temporal pattern of PLES in Nanchong were attributed to the intertwined factors of national policies, economic development, population growth, and the natural environment. This study introduced a novel approach towards rational planning of land resources in Nanchong, which may facilitate more sustainable urban planning and development.
  19. Shi J, Kim HK, Salmon CT, Tandoc EC, Goh ZH
    Soc Sci Med, 2024 Jan;340:116431.
    PMID: 38000175 DOI: 10.1016/j.socscimed.2023.116431
    RATIONALE: Countries worldwide faced the same public health crisis that required promoting the same health behavior-vaccinations-during the COVID-19 pandemic. Thus, scholars have a unique opportunity to test behavioral change theories across countries with different cultural backgrounds.

    OBJECTIVE: Employing the extended theory of social normative behavior, this study examines the influence of individual and collective norms on COVID-19 vaccination intention across eight Asian countries. We examine how cultural tightness-looseness, defined as the degree of a culture's emphasis on norms and tolerance of deviant behavior, shapes normative social influence on COVID-19 vaccination intention.

    METHODS: We conducted a multicountry online survey (N = 2676) of unvaccinated individuals in China, Indonesia, Japan, Malaysia, Singapore, South Korea, Thailand, and Vietnam in May and June 2021, when COVID-19 vaccination mandates had not yet been implemented in those countries. We conducted hierarchical regression analyses with interaction terms for the total sample and then re-categorizied the eight countries as either "tight" (n = 1102) or "loose" (n = 1574) to examine three-way interactions between individual norms, collective norms, and cultural tightness-looseness.

    RESULTS: Perceived injunctive norms exerted the strongest impact of all normative factors on vaccination intention. Collective injunctive norms' influence depended on both perceived injunctive and descriptive norms, which was larger when norms were lower (vs. higher). The interactive pattern between perceived and collective norms was more pronounced in countries with greater cultural tightness.

    CONCLUSION: Our findings reveal nuanced patterns of how individual and collective social norms influence health behavioral decisions, depending on the degree of cultural tightness-looseness.

  20. Zhang Y, He Y, Yuan L, Shi J, Zhao J, Tan C, et al.
    Phytomedicine, 2024 Sep;132:155838.
    PMID: 38964153 DOI: 10.1016/j.phymed.2024.155838
    BACKGROUND: Areca nut polyphenols (AP) that extracted from areca nut, have been demonstrated for their potential of anti-fatigue effects. However, the underlying mechanisms for the anti-fatigue properties of AP has not been fully elucidated to date. Previous studies have predominantly concentrated on single aspects, such as antioxidation and anti-inflammation, yet have lacked comprehensive multi-dimensional analyses.

    PURPOSE: To explore the underlying mechanism of AP in exerting anti-fatigue effects.

    METHODS: In this study, we developed a chronic sleep deprivation-induced fatigue model and used physiological, hematological, and biochemical indicators to evaluate the anti- fatigue efficacy of AP. Additionally, a multi-omics approach was employed to reveal the anti-fatigue mechanisms of AP from the perspective of microbiome, metabolome, and proteome.

    RESULTS: The detection of physiology, hematology and biochemistry index indicated that AP markedly alleviate mice fatigue state induced by sleep deprivation. The 16S rRNA sequencing showed the AP promoted the abundance of probiotics (Odoribacter, Dubosiella, Marvinbryantia, and Eubacterium) and suppressed harmful bacteria (Ruminococcus). On the other hand, AP was found to regulate the expression of colonic proteins, such as increases of adenosine triphosphate (ATP) synthesis and mitochondrial function related proteins, including ATP5A1, ATP5O, ATP5L, ATP5H, NDUFA, NDUFB, NDUFS, and NDUFV. Serum metabolomic analysis revealed AP upregulated the levels of anti-fatigue amino acids, such as taurine, leucine, arginine, glutamine, lysine, and l-proline. Hepatic proteins express levels, especially tricarboxylic acid (TCA) cycle (CS, SDHB, MDH2, and DLST) and redox-related proteins (SOD1, SOD2, GPX4, and PRDX3), were significantly recovered by AP administration. Spearman correlation analysis uncovered the strong correlation between microbiome, metabolome and proteome, suggesting the anti-fatigue effects of AP is attribute to the energy homeostasis and redox balance through gut-liver axis.

    CONCLUSION: AP increased colonic ATP production and improve mitochondrial function by regulating gut microbiota, and further upregulated anti-fatigue amino acid levels in the blood. Based on the gut-liver axis, AP upregulated the hepatic tricarboxylic acid cycle and oxidoreductase-related protein expression, regulating energy homeostasis and redox balance, and ultimately exerting anti-fatigue effects. This study provides insights into the anti-fatigue mechanisms of AP, highlighting its potential as a therapeutic agent.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links