Affiliations 

  • 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
  • 2 Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
Anal Chem, 2023 Dec 26;95(51):18793-18802.
PMID: 38095040 DOI: 10.1021/acs.analchem.3c03785

Abstract

Metabolomics and proteomics offer significant advantages in understanding biological mechanisms at two hierarchical levels. However, conventional single omics analysis faces challenges due to the high demand for specimens and the complexity of intrinsic associations. To obtain comprehensive and accurate system biological information, we developed a multiomics analytical method called Windows Scanning Multiomics (WSM). In this method, we performed simultaneous extraction of metabolites and proteins from the same sample, resulting in a 10% increase in the coverage of the identified biomolecules. Both metabolomics and proteomics analyses were conducted by using ultrahigh-performance liquid chromatography mass spectrometry (UPLC-MS), eliminating the need for instrument conversions. Additionally, we designed an R-based program (WSM.R) to integrate mathematical and biological correlations between metabolites and proteins into a correlation network. The network created from simultaneously extracted biomolecules was more focused and comprehensive compared to those from separate extractions. Notably, we excluded six pairs of false-positive relationships between metabolites and proteins in the network established using simultaneously extracted biomolecules. In conclusion, this study introduces a novel approach for multiomics analysis and data processing that greatly aids in bioinformation mining from multiomics results. This method is poised to play an indispensable role in systems biology research.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.