Affiliations 

  • 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
  • 2 Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • 3 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; Future Food (Bai Ma) Research Institue, 111 Baima Road, Lishui District, Nanjing, Jiangsu, People's Republic of China. Electronic address: yfliu@jiangnan.edu.cn
Food Chem, 2024 Apr 16;438:137400.
PMID: 38039864 DOI: 10.1016/j.foodchem.2023.137400

Abstract

The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.