Affiliations 

  • 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
  • 2 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China. Electronic address: yfliu@jiangnan.edu.cn
  • 3 Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
Food Chem, 2021 Dec 04;381:131745.
PMID: 35124493 DOI: 10.1016/j.foodchem.2021.131745

Abstract

The effect of different types of oils including camellia oil (CLO), sunflower oil (SFO), corn oil (CO) and linseed oil (LO) on the formation, crystal network structure and mechanical properties of 4%wt beeswax (BW) in oleogel was investigated. BW oleogels containing oils with higher contents of polyunsaturated fatty acids gelled first (1%wt), especially LO with higher contents of linolenic acid rather than CLO with higher contents of monounsaturated fatty acids. In comparison, oils with higher polyunsaturated fatty acid contents exhibited higher Db with more extensive microstructure at different cooling rates, which was related to shorter nucleation induction time of crystal and higher crystallinity. Stronger van der Waals forces were observed in oleogels with higher polyunsaturated fatty acid contents especially for LO oleogel. Rheology also showed that LO oleogel with higher content of linolenic acid had higher crystallinity and lower crystal melting interfacial tension, resulting in the formation of a more stable network structure.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.