Affiliations 

  • 1 Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia. Electronic address: syarifa_22011964@utp.edu.my
  • 2 Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia. Electronic address: siti_22000240@utp.edu.my
  • 3 Research Center for Marine and Land Bioindustry National Research and Innovation Agency, North Lombok, Indonesia; Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, Indonesia
  • 4 Department of Forestry, Faculty of Forestry, Muhammadiyah University of West Sumatera, Padang 25171, West Sumatera, Indonesia
  • 5 Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia. Electronic address: yeeho.chai@utp.edu.my
  • 6 Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia. Electronic address: lam.mankee@utp.edu.my
Biotechnol Adv, 2025;79:108529.
PMID: 39922510 DOI: 10.1016/j.biotechadv.2025.108529

Abstract

Microalgae have emerged as a promising and sustainable source for polyhydroxyalkanoates (PHA), which are increasingly recognized for their potential in bioplastics production. However, the widespread application of microalgae-derived PHA faces challenges related to economic feasibility and scalability. This review provides a comprehensive analysis of recent advancements in the cultivation and optimization of microalgae for PHA production, highlighting the critical role of nutrient limitation, particularly nitrogen and phosphorus, in enhancing PHA accumulation. This review also explores the effectiveness of various cultivation systems, including autotrophic, heterotrophic, and mixotrophic approaches, in maximizing PHA yields. Environmental factors such as light intensity, salinity, and pH are examined for their influence on PHA synthesis pathways. Additionally, it identifies key technical and economic challenges that must be addressed to commercialize microalgae-based bioplastics to fully harness the potential of microalgae in sustainable bioplastic production.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.