Displaying publications 1 - 20 of 127 in total

Abstract:
Sort:
  1. Mubarak AA, Ilyas RA, Nordin AH, Ngadi N, Alkbir MFM
    Int J Biol Macromol, 2024 Oct;277(Pt 1):134165.
    PMID: 39059537 DOI: 10.1016/j.ijbiomac.2024.134165
    In recent years, there has been an increase in research devoted to the advancement of cellulose and nanocellulose-based materials, which are advantageous due to their renewable nature, strength, rigidity, and environmental friendliness. This exploration complies with the fundamental tenets of environmental stewardship and sustainability. An area of industrial biotechnology where cellulosic agricultural residues have the potential to be economically utilized is through the conversion of such residues; sugarcane bagasse is currently leading this charge. SCB, a plentiful fibrous byproduct produced during the sugarcane industry's operations, has historically been utilized in various sectors, including producing paper, animal feed, enzymes, biofuel conversion, and biomedical applications. Significantly, SCB comprises a considerable amount of cellulose, approximately 40 % to 50 %, rendering it a valuable source of cellulose fibre for fabricating cellulose nanocrystals. This review sheds light on the significant advances in surface modification techniques, encompassing physical, chemical, and biological treatments, that enhance sugarcane bagasse fibres' adsorption capacity and selectivity. Furthermore, the paper investigates the specific advancements related to the augmentation of sugarcane bagasse fibres' efficacy in adsorbing a wide range of pollutants. These pollutants span a spectrum that includes heavy metals, dyes, organic pollutants, and emerging contaminants. The discussion provides a comprehensive overview of the targeted removal processes facilitated by applying modified fibres. The unique structural and chemical properties inherent in sugarcane bagasse fibres and their widespread availability position them as highly suitable adsorbents for various pollutants. This convergence of attributes underscores the potential of sugarcane bagasse fibres in addressing environmental challenges and promoting sustainable solutions across multiple industries.
    Matched MeSH terms: Biotechnology/methods
  2. Kee PE, Ng TC, Lan JC, Ng HS
    Crit Rev Biotechnol, 2020 Jun;40(4):555-569.
    PMID: 32283954 DOI: 10.1080/07388551.2020.1747388
    Aqueous biphasic system (ABS) is widely used in the recovery, extraction, purification and separation of proteins, enzymes, nucleic acids and antibodies. The ABS with high water content and low interfacial tension offers a biocompatible environment for the recovery of labile biomolecules. Process integration can be achieved using ABS by incorporating multiple-steps of purification, concentration and purification of biomolecules in a single-step operation which often results in high product recovery yield and purity. Conventional ABS is usually formed by aqueous solutions of two polymers or a polymer and a salt above a critical concentration. The high viscosity of polymer-based ABS causes slow phase separation and hinders the mass transfer of biomolecules, whereas polymer/salt ABS is characterized by high ionic strength resulting in the loss of bioactivity of recovered biomolecules. These limitations have encouraged the development of novel ABS which is more cost-effective for various biotechnological applications. This review discusses the characteristics and mechanisms of several types of emerging unconventional ABS using phase-forming components such as hyperbranched polymers, special salts, surfactants, magnetic fields, the addition of nanoparticles and incorporation of various solvent. Moreover, several novel applications of ABS for different separation purposes such as microfluidic-based ABS, ABS bioreactors, application of ABS as an analytical tool, and ABS micropatterning are discussed in this review. In the last section of this review, a comprehensive summary of process integration using ABS for extractive fermentations, bioconversion, crystallization and precipitation is also supplemented for the comprehensive review of various types and applications of ABS in recent years.
    Matched MeSH terms: Biotechnology/methods*
  3. Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN
    Arch Microbiol, 2024 Mar 12;206(4):152.
    PMID: 38472371 DOI: 10.1007/s00203-024-03871-2
    Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
    Matched MeSH terms: Biotechnology/methods
  4. Zhao J, Ma H, Gao M, Qian D, Wang Q, Shiung Lam S
    Bioresour Technol, 2024 Sep;408:131133.
    PMID: 39033828 DOI: 10.1016/j.biortech.2024.131133
    The depletion of fossil fuels has prompted an urgent search for alternative chemicals from renewable sources. Current technology in medium chain fatty acids (MCFAs) production though chain elongation (CE) is becoming increasingly sustainable, hence the motivation for this review, which provides the detailed description, insights and analysis of the metabolic pathways, substrates type, inoculum and fermentation process. The main rate-limiting steps of microbial MCFAs production were comprehensively revealed and the corresponding innovative solutions were also critically evaluated. Innovative strategies such as substrate pretreatment, electrochemical regulation, product separation, fermentation parameter optimization, and electroactive additives have shown significant advantages in overcoming the rate-limiting steps. Furthermore, novel regulatory strategies such as quorum sensing and electronic bifurcation are expected to further increase the MCFAs yield. Finally, the techno-economic analysis was carried out, and the future research focuses were also put forward.
    Matched MeSH terms: Biotechnology/methods
  5. Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA
    Int J Biol Macromol, 2024 Sep;276(Pt 2):133978.
    PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978
    Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
    Matched MeSH terms: Biotechnology/methods
  6. Yu KL, Ong HC, Zaman HB
    J Environ Manage, 2024 Sep;368:122085.
    PMID: 39142099 DOI: 10.1016/j.jenvman.2024.122085
    The production of renewable biofuel through microalgae and green technology can be a promising solution to meet future energy demands whilst reducing greenhouse gases (GHG) emissions and recovering energy for a carbon-neutral bio-economy and environmental sustainability. Recently, the integration of Energy Informatics (EI) technology as an emerging approach has ensured the feasibility and enhancement of microalgal biotechnology and bioenergy applications. Integrating EI technology such as artificial intelligence (AI), predictive modelling systems and life cycle analysis (LCA) in microalgae field applications can improve cost, efficiency, productivity and sustainability. With the approach of EI technology, data-driven insights and decision-making, resource optimization and a better understanding of the environmental impact of microalgae cultivation could be achieved, making it a crucial step in advancing this field and its applications. This review presents the conventional technologies in the microalgae-based system for wastewater treatment and bioenergy production. Furthermore, the recent integration of EI in microalgal technology from the AI application to the modelling and optimization using predictive control systems has been discussed. The LCA and techno-economic assessment (TEA) in the environmental sustainability and economic point of view are also presented. Future challenges and perspectives in the microalgae-based wastewater treatment to bioenergy production integrated with the EI approach, are also discussed in relation to the development of microalgae as the future energy source.
    Matched MeSH terms: Biotechnology/methods
  7. Tan CH, Show PL, Chang JS, Ling TC, Lan JC
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 2):1219-27.
    PMID: 25728066 DOI: 10.1016/j.biotechadv.2015.02.013
    Microalgae have caught the world's attention for its potential to solve one of the world's most pressing issues-sustainable green energy. Compared to biofuels supplied by oil palm, rapeseed, soybean and sugar cane, microalgae alone can be manipulated to generate larger amounts of biodiesel, bioethanol, biohydrogen and biomass in a shorter time. Apart from higher productivity, microalgae can also grow using brackish water on non-arable land, greatly reducing the competition with food and cash crops. Hence, numerous efforts have been put into the commercialisation of microalgae-derived biofuel by both the government and private bodies. This paper serves to review conventional and novel methods for microalgae culture and biomass harvest, as well as recent developments in techniques for microalgal biofuel production.
    Matched MeSH terms: Biotechnology/methods*
  8. Show KY, Lee DJ, Chang JS
    Bioresour Technol, 2011 Sep;102(18):8524-33.
    PMID: 21624834 DOI: 10.1016/j.biortech.2011.04.055
    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.
    Matched MeSH terms: Biotechnology/methods*
  9. Gopinath SC, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, et al.
    Biomed Res Int, 2015;2015:140726.
    PMID: 26180780 DOI: 10.1155/2015/140726
    Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information about microbial keratinases and important considerations in keratinase production are discussed.
    Matched MeSH terms: Biotechnology/methods*
  10. Thakur IS, Lee KT, Nigam PS, Sukumaran RK
    Bioresour Technol, 2015;188:1.
    PMID: 25953660 DOI: 10.1016/j.biortech.2015.04.076
    Matched MeSH terms: Biotechnology/methods*
  11. Arshad ZI, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP
    Appl Microbiol Biotechnol, 2014 Sep;98(17):7283-97.
    PMID: 24965557 DOI: 10.1007/s00253-014-5889-y
    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.
    Matched MeSH terms: Biotechnology/methods*
  12. Hassan H, Lim JK, Hameed BH
    Bioresour Technol, 2016 Dec;221:645-655.
    PMID: 27671343 DOI: 10.1016/j.biortech.2016.09.026
    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils.
    Matched MeSH terms: Biotechnology/methods*
  13. Salleh MSM, Ibrahim MF, Roslan AM, Abd-Aziz S
    Sci Rep, 2019 05 15;9(1):7443.
    PMID: 31092836 DOI: 10.1038/s41598-019-43718-1
    Simultaneous saccharification and fermentation (SSF) with delayed yeast extract feeding (DYEF) was conducted in a 2-L bioreactor equipped with in-situ recovery using a gas stripping in order to enhance biobutanol production from lignocellulosic biomass of oil palm empty fruit bunch (OPEFB). This study showed that 2.88 g/L of biobutanol has been produced from SSF with a similar yield of 0.23 g/g as compared to separate hydrolysis and fermentation (SHF). An increase of 42% of biobutanol concentration was observed when DYEF was introduced in the SSF at 39 h of fermentation operation. Biobutanol production was further enhanced up to 11% with a total improvement of 72% when in-situ recovery using a gas stripping was implemented to reduce the solvents inhibition in the bioreactor. In overall, DYEF and in-situ recovery were able to enhance biobutanol production in SSF.
    Matched MeSH terms: Biotechnology/methods*
  14. Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, et al.
    Curr Microbiol, 2024 Jul 01;81(8):251.
    PMID: 38954017 DOI: 10.1007/s00284-024-03772-z
    A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
    Matched MeSH terms: Biotechnology/methods
  15. Harun R, Yip JW, Thiruvenkadam S, Ghani WA, Cherrington T, Danquah MK
    Biotechnol J, 2014 Jan;9(1):73-86.
    PMID: 24227697 DOI: 10.1002/biot.201200353
    The continuous growth in global population and the ongoing development of countries such as China and India have contributed to a rapid increase in worldwide energy demand. Fossil fuels such as oil and gas are finite resources, and their current rate of consumption cannot be sustained. This, coupled with fossil fuels' role as pollutants and their contribution to global warming, has led to increased interest in alternative sources of energy production. Bioethanol, presently produced from energy crops, is one such promising alternative future energy source and much research is underway in optimizing its production. The economic and temporal constraints that crop feedstocks pose are the main downfalls in terms of the commercial viability of bioethanol production. As an alternative to crop feedstocks, significant research efforts have been put into utilizing algal biomass as a feedstock for bioethanol production. Whilst the overall process can vary, the conversion of biomass to bioethanol usually contains the following steps: (i) pretreatment of feedstock; (ii) hydrolysis; and (iii) fermentation of bioethanol. This paper reviews different technologies utilized in the pretreatment and fermentation steps, and critically assesses their applicability to bioethanol production from algal biomass. Two different established fermentation routes, single-stage fermentation and two-stage gasification/fermentation processes, are discussed. The viability of algal biomass as an alternative feedstock has been assessed adequately, and further research optimisation must be guided toward the development of cost-effective scalable methods to produce high bioethanol yield under optimum economy.
    Matched MeSH terms: Biotechnology/methods*
  16. Shuit SH, Ong YT, Lee KT, Subhash B, Tan SH
    Biotechnol Adv, 2012 Nov-Dec;30(6):1364-80.
    PMID: 22366515 DOI: 10.1016/j.biotechadv.2012.02.009
    In recent years, environmental problems caused by the use of fossil fuels and the depletion of petroleum reserves have driven the world to adopt biodiesel as an alternative energy source to replace conventional petroleum-derived fuels because of biodiesel's clean and renewable nature. Biodiesel is conventionally produced in homogeneous, heterogeneous, and enzymatic catalysed processes, as well as by supercritical technology. All of these processes have their own limitations, such as wastewater generation and high energy consumption. In this context, the membrane reactor appears to be the perfect candidate to produce biodiesel because of its ability to overcome the limitations encountered by conventional production methods. Thus, the aim of this paper is to review the production of biodiesel with a membrane reactor by examining the fundamental concepts of the membrane reactor, its operating principles and the combination of membrane and catalyst in the catalytic membrane. In addition, the potential of functionalised carbon nanotubes to serve as catalysts while being incorporated into the membrane for transesterification is discussed. Furthermore, this paper will also discuss the effects of process parameters for transesterification in a membrane reactor and the advantages offered by membrane reactors for biodiesel production. This discussion is followed by some limitations faced in membrane technology. Nevertheless, based on the findings presented in this review, it is clear that the membrane reactor has the potential to be a breakthrough technology for the biodiesel industry.
    Matched MeSH terms: Biotechnology/methods*
  17. Anis SN, Iqbal NM, Kumar S, Al-Ashraf A
    Bioengineered, 2013 Mar-Apr;4(2):115-8.
    PMID: 23018620 DOI: 10.4161/bioe.22350
    A simple procedure for recovering biodegradable polymer from bacterial cells has been developed using economical and environmentally friendly solvent or chemicals. Recombinant bacterium, Cupriavidus necator harboring pBBR1MCS-C2 plasmid polyhydroxyalkanoate (PHA) synthase gene was used for the production of copolymer P(3HB-co-3HHx) from crude palm kernel oil (CPKO). NaOH was chosen in this study as it could give high purity and recovery yield. Increase of NaOH concentration had resulted in an increase of the PHA purity, but the recovery yield had decreased. The greater improvement of PHA purity and recovery were achieved by incubating the freeze-dried cells (10-30 g/L) in NaOH (0.1 M) for 1-3 h at 30°C and polishing using 20% (v/v) of ethanol. The treatment caused negligible degradation of the molecular weight of PHA recovered from the bacterial cells. The present review also highlights other extraction methods to provide greater insights into economical and sustainable recovery of PHA from bacterial cells.
    Matched MeSH terms: Biotechnology/methods
  18. Amin L, Ahmad J, Jahi JM, Nor AR, Osman M, Mahadi NM
    Public Underst Sci, 2011 Sep;20(5):674-89.
    PMID: 22164706
    Despite considerable research in advanced countries on public perceptions of and attitudes to modern biotechnology, limited effort has been geared towards developing a structural model of public attitudes to modern biotechnology. The purpose of this paper is to identify the relevant factors influencing public attitudes towards genetically modified (GM) soybean, and to analyze the relationship between all the attitudinal factors. A survey was carried out on 1,017 respondents from various stakeholder groups in the Klang Valley region. Results of the survey have confirmed that attitudes towards complex issues such as biotechnology should be seen as a multifaceted process. The most important factors predicting support for GM soybean are the specific application-linked perceptions about the benefits, acceptance of risk and moral concern while risk and familiarity are significant predictors of benefit and risk acceptance. Attitudes towards GM soybean are also predicted by several general classes of attitude.
    Matched MeSH terms: Biotechnology/methods*
  19. Juan JC, Kartika DA, Wu TY, Hin TY
    Bioresour Technol, 2011 Jan;102(2):452-60.
    PMID: 21094045 DOI: 10.1016/j.biortech.2010.09.093
    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.
    Matched MeSH terms: Biotechnology/methods*
  20. Abdulla R, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2011 Mar;31(1):53-64.
    PMID: 20572796 DOI: 10.3109/07388551.2010.487185
    The fuel crisis and environmental concerns, mainly due to global warming, have led researchers to consider the importance of biofuels such as biodiesel. Vegetable oils, which are too viscous to be used directly in engines, are converted into their corresponding methyl or ethyl esters by a process called transesterification. With the recent debates on "food versus fuel," non-edible oils, such as Jatropha curcas, are emerging as one of the main contenders for biodiesel production. Much research is still needed to explore and realize the full potential of a green fuel from J. curcas. Upcoming projects and plantations of Jatropha in countries such as India, Malaysia, and Indonesia suggest a promising future for this plant as a potential biodiesel feedstock. Many of the drawbacks associated with chemical catalysts can be overcome by using lipases for enzymatic transesterification. The high cost of lipases can be overcome, to a certain extent, by immobilization techniques. This article reviews the importance of the J. curcas plant and describes existing research conducted on Jatropha biodiesel production. The article highlights areas where further research is required and relevance of designing an immobilized lipase for biodiesel production is discussed.
    Matched MeSH terms: Biotechnology/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links