Affiliations 

  • 1 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
  • 2 School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • 3 Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi 229, Bandung 40154, Indonesia
  • 4 Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • 5 HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • 6 Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
  • 7 School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, Nibong Tebal 14300, Pulau Pinang, Malaysia
  • 8 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia. Electronic address: PauLoke.Show@nottingham.edu.my
Bioresour Technol, 2021 Apr;325:124702.
PMID: 33487515 DOI: 10.1016/j.biortech.2021.124702

Abstract

The accumulation of conventional petroleum-based polymers has increased exponentially over the years. Therefore, algae-based biopolymer has gained interest among researchers as one of the alternative approaches in achieving a sustainable circular economy around the world. The benefits of microalgae biopolymer over other feedstock is its autotrophic complex to reduce the greenhouse gases emission, rapid growing ability with flexibility in diverse environments and its ability to compost that gives greenhouse gas credits. In contrast, this review provides a comprehensive understanding of algae-based biopolymer in the evaluation of microalgae strains, bioplastic characterization and bioplastic blending technologies. The future prospects and challenges on the algae circular bioeconomy which includes the challenges faced in circular economy, issues regard to the scale-up and operating cost of microalgae cultivation and the life cycle assessment on algal-based biopolymer were highlighted. The aim of this review is to provide insights of algae-based biopolymer towards a sustainable circular bioeconomy.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.