α-Synuclein (α-Syn) plays a crucial role in the pathophysiology of Parkinson's disease (PD). α-Syn has been extensively studied in many neuronal cell-based PD models but has yielded mixed results. The objective of this study was to re-evaluate the dual cytotoxic/protective roles of α-Syn in dopaminergic SH-SY5Y cells. Stable SH-SY5Y cells overexpressing wild type or familial α-Syn mutants (A30P, E46K and A53T) were subjected to acute and chronic rotenone and maneb treatment. Compared with untransfected SH-SY5Y cells, wild type α-Syn attenuated rotenone and maneb-induced cell death along with an attenuation of toxin-induced mitochondrial membrane potential changes and Reactive Oxygen Species level, whereas the mutant α-Syn constructs exacerbated environmental toxins-induced cytotoxicity. After chronic treatment, wild type α-Syn but not the mutant variants was found to rescue cells from subsequent acute hydrogen peroxide insult. These results suggest that the fundamental property of wild type α-Syn may be protective, and such property may be lost by its familial PD mutations.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.