Trop Biomed, 2010 Apr;27(1):60-7.
PMID: 20562815

Abstract

Proteins on the surface of Plasmodium falciparum merozoites are good targets for vaccine development against malaria because they are accessible to antibodies in the plasma. The 19 kDa C-terminus of merozoite surface protein-1 (MSP-1(19)) has been shown to induce both inhibitory as well as blocking antibodies, the latter blocking the protective effects of the former. Inhibitory antibodies bind to MSP-1(19) and inhibit merozoite invasion of red blood cells (RBC) but the binding of blocking antibodies can prevent binding of inhibitory antibodies thereby allowing the parasite to invade RBC. We constructed a synthetic version of the MSP-1(19) of the P. falciparum using mycobacterium codon usage by assembly PCR. The synthetic MSP-1(19) was mutated at various sites to promote the production of inhibitory but not blocking antibodies as previously reported. The native and mutated MSP-1(19) were cloned and expressed in Mycobacterium bovis bacille Calmette-Guerin (BCG) and the expressions of the recombinant proteins were detected by specific monoclonal antibodies (mAbs) namely, 12.10 and 1E1 against MSP-1(19) using Western blotting. The mutated MSP-1(19) protein reacted with the inhibitory mAb, 12.10, but not the blocking mAb, 1E1, paving the way for the construction of a potential recombinant BCG (rBCG) blood stage vaccine against malaria.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications