Affiliations 

  • 1 University of Malaya
  • 2 Ministry of Health
Ann Dent, 2007;14(1):46-51.
MyJurnal

Abstract

The impact strength of a newly developed experimental polyurethane-based polymer which is derived from palm oil (Experimental PU) was compared with denture polymers; heat-cured and self cured polymethyl methacrylate (PMMA) and ® Eclipse , light-activated urethane dimethacrylate prosthetic resin system. Ten specimens were ® prepared using heat-cured PMMA (Meliodent Heat Cure, Heraeus Kulzer, Germany), self cured PMMA ® (Meliodent Rapid Repair, Heraeus Kulzer, ® Germany), Eclipse baseplate resin (Dentsply, USA) and Experimental PU material. Specimens were prepared following manu- facturer’s instructions except for the Experimental PU material where it was prepared in bulk and sectioned to the desired dimension, 64 x 6 x 4 mm. A ‘V’ notch of approximately 0.8mm in depth was machine cut across the 6mm width. Prior to the Charpy type impact test, specimens were soaked in a water bath for 50 hours at 37ºC. ® Eclipse baseplate resin showed the highest 2 impact strength (2.73 kJ/m ±0.54) followed by ® 2 Meliodent Rapid Repair (2.50kJ/m ±0.65), ® 2 Meliodent Heat Cure (1.96kJ/m ±0.42) and 2 Experimental PU (1.04kJ/m ±0.29). One-way ANOVA showed significant interaction between materials (p