Affiliations 

  • 1 Curtin University of Technology, Sarawak
MyJurnal

Abstract

This study analysed mixed convection heat transfer for thermally developing flow in a side heated square duct with varying inclination angles. The test section consists of one-side heated isothermal wall and three adiabatic walls. The inclination angle varied from 00C, and heat flux ranging from 252 W/m2C to 100o30o 858 to 1788 and the wall surface emissivity was considered to be 0.05 and 0.85. Flow visualizations were carried out to obtain the flow structure of natural convection and mixed convection for three inclination angles. The variation of surface temperature along the length of the test section was studied to calculate the convective Nusselt number. The result showed that the heat transfer enhancement and convective Nusselt number was significantly affected by the variations of inclination angle, flow velocity, Reynolds number, and the surface radiation. It was also observed that the increase in the inclination angle improved convection rate and hence significantly enhanced heat transfer. to 200, with hot wall temperature ranging from to 872 W/m2