Affiliations 

  • 1 Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Electronic address: mohdrafein@upm.edu.my
  • 2 Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
  • 3 Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
  • 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Bioresour Technol, 2015 Oct;193:128-34.
PMID: 26125612 DOI: 10.1016/j.biortech.2015.06.074

Abstract

Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.