Affiliations 

  • 1 Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • 2 Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan. Electronic address: h-akita@aist.go.jp
  • 3 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • 4 Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
  • 5 Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan; Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
  • 6 Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
Bioresour Technol, 2017 Dec;245(Pt A):1040-1048.
PMID: 28946206 DOI: 10.1016/j.biortech.2017.08.131

Abstract

Acetoin is used in the biochemical, chemical and pharmaceutical industries. Several effective methods for acetoin production from petroleum-based substrates have been developed, but they all have an environmental impact and do not meet sustainability criteria. Here we describe a simple and efficient method for acetoin production from oil palm mesocarp fiber hydrolysate using engineered Escherichia coli. An optimization of culture conditions for acetoin production was carried out using reagent-grade chemicals. The final concentration reached 29.9gL(-1) with a theoretical yield of 79%. The optimal pretreatment conditions for preparing hydrolysate with higher sugar yields were then determined. When acetoin was produced using hydrolysate fortified with yeast extract, the theoretical yield reached 97% with an acetoin concentration of 15.5gL(-1). The acetoin productivity was 10-fold higher than that obtained using reagent-grade sugars. This approach makes use of a compromise strategy for effective utilization of oil palm biomass towards industrial application.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.