Affiliations 

  • 1 Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia; Texas Children's Hospital Center for Vaccine Development, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
  • 2 Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
  • 3 Department of Microbiology and Immunology & Center of Biodefense and Emerging Diseases, University of Texas Medical Branch, Galveston, TX, USA
  • 4 Texas Children's Hospital Center for Vaccine Development, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
  • 5 Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China
  • 6 Texas Children's Hospital Center for Vaccine Development, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA. Electronic address: bottazzi@bcm.edu
Vaccine, 2018 03 27;36(14):1853-1862.
PMID: 29496347 DOI: 10.1016/j.vaccine.2018.02.065

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 2040 patients and caused 712 deaths since its first appearance in 2012, yet neither pathogen-specific therapeutics nor approved vaccines are available. To address this need, we are developing a subunit recombinant protein vaccine comprising residues 377-588 of the MERS-CoV spike protein receptor-binding domain (RBD), which, when formulated with the AddaVax adjuvant, it induces a significant neutralizing antibody response and protection against MERS-CoV challenge in vaccinated animals. To prepare for the manufacture and first-in-human testing of the vaccine, we have developed a process to stably produce the recombinant MERS S377-588 protein in Chinese hamster ovary (CHO) cells. To accomplish this, we transfected an adherent dihydrofolate reductase-deficient CHO cell line (adCHO) with a plasmid encoding S377-588 fused with the human IgG Fc fragment (S377-588-Fc). We then demonstrated the interleukin-2 signal peptide-directed secretion of the recombinant protein into extracellular milieu. Using a gradually increasing methotrexate (MTX) concentration to 5 μM, we increased protein yield by a factor of 40. The adCHO-expressed S377-588-Fc recombinant protein demonstrated functionality and binding specificity identical to those of the protein from transiently transfected HEK293T cells. In addition, hCD26/dipeptidyl peptidase-4 (DPP4) transgenic mice vaccinated with AddaVax-adjuvanted S377-588-Fc could produce neutralizing antibodies against MERS-CoV and survived for at least 21 days after challenge with live MERS-CoV with no evidence of immunological toxicity or eosinophilic immune enhancement. To prepare for large scale-manufacture of the vaccine antigen, we have further developed a high-yield monoclonal suspension CHO cell line.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.