Affiliations 

  • 1 Universiti Sains Malaysia
MATEMATIKA, 2017;33(2):119-130.
MyJurnal

Abstract

An accurate forecasting of tropospheric ozone (O3) concentration is benefi-
cial for strategic planning of air quality. In this study, various forecasting techniques are
used to forecast the daily maximum O3 concentration levels at a monitoring station
in the Klang Valley, Malaysia. The Box-Jenkins autoregressive integrated movingaverage
(ARIMA) approach and three types of neural network models, namely, backpropagation
neural network, Elman recurrent neural network and radial basis function
neural network are considered. The daily maximum data, spanning from 1 January
2011 to 7 August 2011, was obtained from the Department of Environment, Malaysia.
The performance of the four methods in forecasting future values of ozone concentrations
is evaluated based on three criteria, which are root mean square error (RMSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE). The findings
show that the Box-Jenkins approach outperformed the artificial neural network
methods.