Displaying publications 1 - 20 of 217 in total

Abstract:
Sort:
  1. Sutherland WJ, Broad S, Butchart SHM, Clarke SJ, Collins AM, Dicks LV, et al.
    Trends Ecol Evol, 2019 01;34(1):83-94.
    PMID: 30554808 DOI: 10.1016/j.tree.2018.11.001
    We present the results of our tenth annual horizon scan. We identified 15 emerging priority topics that may have major positive or negative effects on the future conservation of global biodiversity, but currently have low awareness within the conservation community. We hope to increase research and policy attention on these areas, improving the capacity of the community to mitigate impacts of potentially negative issues, and maximise the benefits of issues that provide opportunities. Topics include advances in crop breeding, which may affect insects and land use; manipulations of natural water flows and weather systems on the Tibetan Plateau; release of carbon and mercury from melting polar ice and thawing permafrost; new funding schemes and regulations; and land-use changes across Indo-Malaysia.
    Matched MeSH terms: Forecasting*
  2. Pathmanathan I
    Med J Malaysia, 1986 Dec;41(4):287-91.
    PMID: 3670149
    Matched MeSH terms: Forecasting
  3. Raman R, Gopalkrishnan G
    PMID: 23119631 DOI: 10.1007/BF02996443
    A brief review of snoring with regard to the aetiology, patho-physiology, investigations and treatment is presented. Questions and unresolved issues are highlighted, hoping to point out directions towards future studies.
    Matched MeSH terms: Forecasting
  4. Valizadeh N, El-Shafie A, Mirzaei M, Galavi H, Mukhlisin M, Jaafar O
    ScientificWorldJournal, 2014;2014:432976.
    PMID: 24790567 DOI: 10.1155/2014/432976
    Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.
    Matched MeSH terms: Forecasting*
  5. Amin A, Remme M, Allotey P, Askew I
    BMJ, 2021 06 28;373:n1621.
    PMID: 34183331 DOI: 10.1136/bmj.n1621
    Matched MeSH terms: Forecasting*
  6. D'Cruz F, Chandrasekharan N
    Med J Malaysia, 1990 Jun;45(2):88-91.
    PMID: 2152024
    Matched MeSH terms: Forecasting
  7. Rosmawati Mohamed, Low, Wah Yun
    JUMMEC, 2006;9(2):1-2.
    MyJurnal
    The year 2005 marked the rebirth of JUMMEC when the Editorial Board took over from its previous Editor with modest but realistic expectations. One year on, we have successfully achieved our initial expectation, that is, to encourage greater participation from our junior academics to write and publish in our very own journal, JUMMEC. As we head towards the end of 2006 and prepare to usher in 2007, we see JUMMEC consolidating and gaining in strength. Let us reflect on its past achievements and our expectations for the future.(Copied from article).
    Matched MeSH terms: Forecasting
  8. Sulandari W, Subanar S, Lee MH, Rodrigues PC
    MethodsX, 2020;7:101015.
    PMID: 32793431 DOI: 10.1016/j.mex.2020.101015
    Hybrid methodologies have become popular in many fields of research as they allow researchers to explore various methods, understand their strengths and weaknesses and combine them into new frameworks. Thus, the combination of different methods into a hybrid methodology allows to overcome the shortcomings of each singular method. This paper presents the methodology for two hybrid methods that can be used for time series forecasting. The first combines singular spectrum analysis with linear recurrent formula (SSA-LRF) and neural networks (NN), while the second combines the SSA-LRF and weighted fuzzy time series (WFTS). Some of the highlights of these proposed methodologies are:•The two hybrid methods proposed here are applicable to load data series and other time series data.•The two hybrid methods handle the deterministic and the nonlinear stochastic pattern in the data.•The two hybrid methods show a significant improvement to the single methods used separately and to other hybrid methods.
    Matched MeSH terms: Forecasting
  9. Gharleghi B, Abu Hassan Shaari Md Nor
    Sains Malaysiana, 2012;41:1163-1169.
    The main aim of this paper was to validate the relative price monetary model (RPMM) of exchange rate determination for the Malaysian exchange rate (RM/USD) using monthly data set from 1986-2010. The Johansen multivariate cointegration test and vector error correction model were employed. Because the time period under consideration includes the South
    East Asian financial crisis, the analysis is done using two time periods; the full time period as well as the period after the crisis. Two interesting results were observed from this empirical exercise. First, there is a long-run relationship between exchange rate and the selected macro variables only for the period after the crisis. Second, the forecasting performance of monetary approach based on the error correction model outperformed the Random Walk model.
    Matched MeSH terms: Forecasting
  10. Natita Wangsoh, Wiboonsak Watthayu, Dusadee Sukawat
    Sains Malaysiana, 2017;46:2541-2547.
    A hybrid climate model (HCM) is a novel proposed model based on the combination of self-organizing map (SOM) and analog method (AM). The main purpose was to improve the accuracy in rainfall forecasting using HCM. In combination process of HCM, SOM algorithm classifies high dimensional input data to low dimensional of several disjointed clusters in which similar input is grouped. AM searches the future day that has similar property with the day in the past. Consequently, the analog day is mapped to each cluster of SOM to investigate rainfall. In this study, the input data, geopotential height at 850 hPa from the Climate Forecast System Reanalysis (CFSR) are training set data and also the complete rainfall data at 30-meteorological stations from Thai meteorological department (TMD) are observed. To improve capability of rainfall forecasting, three different measures were evaluated. The experimental results showed that the performance of HCM is better than the traditional AM. It is illustrated that the HCM can forecast rainfall proficiently.
    Matched MeSH terms: Forecasting
  11. Gregory PJ, Mayes S, Hui CH, Jahanshiri E, Julkifle A, Kuppusamy G, et al.
    Planta, 2019 Sep;250(3):979-988.
    PMID: 31250097 DOI: 10.1007/s00425-019-03179-2
    MAIN CONCLUSION: Crops For the Future (CFF), as an entity, has established a broad range of research activities to promote the improvement and adoption of currently underutilised crops. This paper summarises selected research activities at Crops For the Future (CFF) in pursuit of its mission 'to develop solutions for diversifying future agriculture using underutilised crops'. CFF is a research company focussed on the improvement of underutilised crops, so that they might be grown and consumed more widely with benefits to human food and nutritional security; its founding guarantors were the Government of Malaysia and the University of Nottingham. From its base in Malaysia, it engages in research around the world with a focus on species and system diversification. CFF has adopted a food system approach that adds value by delivering prototype food, feed and knowledge products. Bambara groundnut (Vigna subterranea) was adopted as an exemplar crop around which to develop CFF's food system approach with emphasis on the short-day photoperiod requirement for pod-filling and the hard-to-cook trait. Selective breeding has allowed the development of lines that are less susceptible to photoperiod but also provided a range of tools and approaches that are now being exploited in other crops such as winged bean (Psophocarpus tetragonolobus), amaranth (Amaranthus spp.), moringa (Moringa oleifera) and proso (Panicum miliaceum) and foxtail (Setaria italica) millets. CFF has developed and tested new food products and demonstrated that several crops can be used as feed for black soldier fly which can, in turn, be used to feed fish thereby reducing the need for fishmeal. Information about underutilised crops is widely dispersed; so, a major effort has been made to develop a knowledge base that can be interrogated and used to answer practical questions about potential exploitation of plant and nutritional characteristics. Future research will build on the success with Bambara groundnut and include topics such as urban agriculture, rural development and diversification, and the development of novel foods.
    Matched MeSH terms: Forecasting
  12. Syed Musa SMS, Md Noorani MS, Abdul Razak F, Ismail M, Alias MA, Hussain SI
    PMID: 32846870 DOI: 10.3390/ijerph17176131
    The theory of critical slowing down (CSD) suggests an increasing pattern in the time series of CSD indicators near catastrophic events. This theory has been successfully used as a generic indicator of early warning signals in various fields, including climate research. In this paper, we present an application of CSD on water level data with the aim of producing an early warning signal for floods. To achieve this, we inspect the trend of CSD indicators using quantile estimation instead of using the standard method of Kendall's tau rank correlation, which we found is inconsistent for our data set. For our flood early warning system (FLEWS), quantile estimation is used to provide thresholds to extract the dates associated with significant increases on the time series of the CSD indicators. We apply CSD theory on water level data of Kelantan River and found that it is a reliable technique to produce a FLEWS as it demonstrates an increasing pattern near the flood events. We then apply quantile estimation on the time series of CSD indicators and we manage to establish an early warning signal for ten of the twelve flood events. The other two events are detected on the first day of the flood.
    Matched MeSH terms: Forecasting
  13. Jaber AM, Ismail MT, Altaher AM
    ScientificWorldJournal, 2014;2014:708918.
    PMID: 25140343 DOI: 10.1155/2014/708918
    This paper mainly forecasts the daily closing price of stock markets. We propose a two-stage technique that combines the empirical mode decomposition (EMD) with nonparametric methods of local linear quantile (LLQ). We use the proposed technique, EMD-LLQ, to forecast two stock index time series. Detailed experiments are implemented for the proposed method, in which EMD-LPQ, EMD, and Holt-Winter methods are compared. The proposed EMD-LPQ model is determined to be superior to the EMD and Holt-Winter methods in predicting the stock closing prices.
    Matched MeSH terms: Forecasting*
  14. Ting CY, Ho CC, Yee HJ, Matsah WR
    Big Data, 2018 03;6(1):42-52.
    PMID: 29570414 DOI: 10.1089/big.2017.0085
    Studies have shown that certain features from geography, demography, trade area, and environment can play a vital role in retail site selection, largely due to the impact they asserted on retail performance. Although the relevant features could be elicited by domain experts, determining the optimal feature set can be intractable and labor-intensive exercise. The challenges center around (1) how to determine features that are important to a particular retail business and (2) how to estimate retail sales performance given a new location? The challenges become apparent when the features vary across time. In this light, this study proposed a nonintervening approach by employing feature selection algorithms and subsequently sales prediction through similarity-based methods. The results of prediction were validated by domain experts. In this study, data sets from different sources were transformed and aggregated before an analytics data set that is ready for analysis purpose could be obtained. The data sets included data about feature location, population count, property type, education status, and monthly sales from 96 branches of a telecommunication company in Malaysia. The finding suggested that (1) optimal retail performance can only be achieved through fulfillment of specific location features together with the surrounding trade area characteristics and (2) similarity-based method can provide solution to retail sales prediction.
    Matched MeSH terms: Forecasting*
  15. Biglari V, Alfan EB, Ahmad RB, Hajian N
    PLoS One, 2013;8(10):e73853.
    PMID: 24146741 DOI: 10.1371/journal.pone.0073853
    Previous researches show that buy (growth) companies conduct income increasing earnings management in order to meet forecasts and generate positive forecast Errors (FEs). This behavior however, is not inherent in sell (non-growth) companies. Using the aforementioned background, this research hypothesizes that since sell companies are pressured to avoid income increasing earnings management, they are capable, and in fact more inclined, to pursue income decreasing Forecast Management (FM) with the purpose of generating positive FEs. Using a sample of 6553 firm-years of companies that are listed in the NYSE between the years 2005-2010, the study determines that sell companies conduct income decreasing FM to generate positive FEs. However, the frequency of positive FEs of sell companies does not exceed that of buy companies. Using the efficiency perspective, the study suggests that even though buy and sell companies have immense motivation in avoiding negative FEs, they exploit different but efficient strategies, respectively, in order to meet forecasts. Furthermore, the findings illuminated the complexities behind informative and opportunistic forecasts that falls under the efficiency versus opportunistic theories in literature.
    Matched MeSH terms: Forecasting/methods*
  16. Ng KH
    Australas Phys Eng Sci Med, 2008 Jun;31(2):85-9.
    PMID: 18697700
    From the time when Roentgen and other physicists made the discoveries which led to the development of radiology, radiotherapy and nuclear medicine, medical physicists have played a pivotal role in the development of new technologies that have revolutionized the way medicine is practiced today. Medical physicists have been transforming scientific advances in the research laboratories to improving the quality of life for patients; indeed innovations such as computed tomography, positron emission tomography and linear accelerators which collectively have improved the medical outcomes for millions of people. In order for radiation-delivery techniques to improve in targeting accuracy, optimal dose distribution and clinical outcome, convergence of imaging and therapy is the key. It is timely for these two specialties to work closer again. This can be achieved by means of cross-disciplinary research, common conferences and workshops, and collaboration in education and training for all. The current emphasis is on enhancing the specific skill development and competency of a medical physicist at the expense of their future roles and opportunities. This emphasis is largely driven by financial and political pressures for optimizing limited resources in health care. This has raised serious concern on the ability of the next generation of medical physicists to respond to new technologies. In addition in the background loom changes of tsunami proportion. The clearly defined boundaries between the different disciplines in medicine are increasingly blurred and those between diagnosis, therapy and management are also following suit. The use of radioactive particles to treat tumours using catheters, high-intensity focused ultrasound, electromagnetic wave ablation and photodynamic therapy are just some areas challenging the old paradigm. The uncertainty and turf battles will only explode further and medical physicists will not be spared. How would medical physicists fit into this changing scenario? We are in the midst of molecular revolution. Are we prepared to explore the newer technologies such as nanotechnology, drug discovery, pre-clinical imaging, optical imaging and biomedical informatics? How are our curricula adapting to the changing needs? We should remember the late Professor John Cameron who advocated imagination and creativity - these important attributes will make us still relevant in 2020 and beyond. To me the future is clear: "To achieve more, we should imagine together."
    Matched MeSH terms: Forecasting*
  17. Dymond CC, Field RD, Roswintiarti O, Guswanto
    Environ Manage, 2005 Apr;35(4):426-40.
    PMID: 15902449
    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and Indonesia have two new sources of information to initiate fire prevention and suppression activities.
    Matched MeSH terms: Forecasting/methods*
  18. Awajan AM, Ismail MT, Al Wadi S
    PLoS One, 2018;13(7):e0199582.
    PMID: 30016323 DOI: 10.1371/journal.pone.0199582
    Many researchers documented that the stock market data are nonstationary and nonlinear time series data. In this study, we use EMD-HW bagging method for nonstationary and nonlinear time series forecasting. The EMD-HW bagging method is based on the empirical mode decomposition (EMD), the moving block bootstrap and the Holt-Winter. The stock market time series of six countries are used to compare EMD-HW bagging method. This comparison is based on five forecasting error measurements. The comparison shows that the forecasting results of EMD-HW bagging are more accurate than the forecasting results of the fourteen selected methods.
    Matched MeSH terms: Forecasting*
  19. Balogun WG, Cobham AE, Amin A
    Metab Brain Dis, 2018 04;33(2):359-368.
    PMID: 28993966 DOI: 10.1007/s11011-017-0119-9
    The science of the brain and nervous system cuts across almost all aspects of human life and is one of the fastest growing scientific fields worldwide. This necessitates the demand for pragmatic investment by all nations to ensure improved education and quality of research in Neurosciences. Although obvious efforts are being made in advancing the field in developed societies, there is limited data addressing the state of neuroscience in sub-Saharan Africa. Here, we review the state of neuroscience development in Nigeria, Africa's most populous country and its largest economy, critically evaluating the history, the current situation and future projections. This review specifically addresses trends in clinical and basic neuroscience research and education. We conclude by highlighting potentially helpful strategies that will catalyse development in neuroscience education and research in Nigeria, among which are an increase in research funding, provision of tools and equipment for training and research, and upgrading of the infrastructure at hand.
    Matched MeSH terms: Forecasting*
  20. Soyiri IN, Reidpath DD
    Int J Gen Med, 2012;5:381-9.
    PMID: 22615533 DOI: 10.2147/IJGM.S31079
    Health forecasting forewarns the health community about future health situations and disease episodes so that health systems can better allocate resources and manage demand. The tools used for developing and measuring the accuracy and validity of health forecasts commonly are not defined although they are usually adapted forms of statistical procedures. This review identifies previous typologies used in classifying the forecasting methods commonly used in forecasting health conditions or situations. It then discusses the strengths and weaknesses of these methods and presents the choices available for measuring the accuracy of health-forecasting models, including a note on the discrepancies in the modes of validation.
    Matched MeSH terms: Forecasting
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links