Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. Reddy KHP, Kim BS, Lam SS, Jung SC, Song J, Park YK
    Environ Res, 2021 04;195:110876.
    PMID: 33592225 DOI: 10.1016/j.envres.2021.110876
    In this study, the role of manganese precursors in mesoporous (meso) MnOx/γ-Al2O3 catalysts was examined systematically for toluene oxidation under ozone at ambient temperature (20 °C). The meso MnOx/γ-Al2O3 catalysts developed with Mn(CH3COO)2, MnCl2, Mn(NO3)2.4H2O and MnSO4 were prepared by an innovative single step solvent-deficient method (SDM); the catalysts were labeled as MnOx/Al2O3(A), MnOx/Al2O3(C), MnOx/Al2O3(N), and MnOx/Al2O3(S), respectively. Among all, MnOx/Al2O3(C) showed superior performance both in toluene removal (95%) as well as ozone decomposition (88%) followed by acetate, nitrate and sulphated precursor MnOx/Al2O3. The superior performance of MnOx/Al2O3(C) in the oxidation of toluene to COx is associated with the ozone decomposition over highly dispersed MnOx in which extremely active oxygen radicals (O2-, O22- and O-) are generated to enhance the oxidation ability of the catalysts greatly. In addition, toluene adsorption over acid support played a vital role in this reaction. Hence, the properties such as optimum Mn3+/Mn4+ ratio, acidic sites, and smaller particle size (≤2 nm) examined by XPS, TPD of NH3, and TEM results are playing vital role in the present study. In summary, the MnOx/Al2O3 (C) catalyst has great potential in environmental applications particularly for the elimination of volatile organic compounds with low loading of manganese developed by SDM.
    Matched MeSH terms: Ozone*
  2. Zakaria SNF, Aziz HA, Alazaiza MYD
    Water Environ Res, 2022 Jan;94(1):e1672.
    PMID: 34860438 DOI: 10.1002/wer.1672
    Landfill leachate can threaten the environment and human life. Therefore, this study aims to investigate the efficiency of ozone (O3 ), O3 with zirconium tetrachloride (O3 /ZrCl4 ), and O3 with tin tetrachloride (O3 /SnCl4 ) in remediating the stabilized anaerobic landfill leachate (SAL) from Alor Pongsu, Perak. Hydroxyl radical (OH•) is an important oxidizing agent in the ozonation process. Its presence was tested using tert-butyl alcohol. Results showed that using ZrCl4 and SnCl4 in ozonation boosted the generation of hydroxyl radical, thereby enhancing the oxidation process and pollutant removal inside the sample. The O3 /ZrCl4 mix at chemical oxygen demand (COD) to ZrCl4 ratio of 1:1.5, pH 8-9, and 90-min reaction time resulted in the highest reduction rates of COD and color at 91.9% and 99.6%, respectively. All results demonstrated that the optimum performance occurred at alkaline conditions (pH > 8), proving that OH radicals primarily oxidized the pollutants through an indirect reaction pathway. The biodegradability (biochemical oxygen demand/COD) ratio was also considerably improved from 0.02 (raw) to 0.37 using O3 /ZrCl4 , compared with using O3 alone and using O3 /SnCl4 , which only recorded 0.23 and 0.28, respectively, after the treatment. The study demonstrated that O3 /ZrCl4 was the most efficient combination. PRACTITIONER POINTS: The O3 /ZrCl4 recorded the highest COD and color removals. The O3 /ZrCl4 combination also recorded higher OH• concentrations. The biodegradability of leachate (BOD5 /COD ratio) improved from 0.02 to 0.37.
    Matched MeSH terms: Ozone*
  3. Muzirah Musa, Kamarulzaman Ibrahim
    Sains Malaysiana, 2012;41:1367-1376.
    Long-memory is often observed in time series data. The existence of long-memory in a data set implies that the successive data points are strongly correlated i.e. they remain persistent for quite some time. A commonly used approach in modellingthe time series data such as the Box and Jenkins models are no longer appropriate since the assumption of stationary is not satisfied. Thus, the scaling analysis is particularly suitable to be used for identifying the existence of long-memory as well as the extent of persistent data. In this study, an analysis was carried out on the observed daily mean per hour of ozone concentration that were available at six monitoring stations located in the urban areas of Peninsular Malaysia from 1998 to 2006. In order to investigate the existence of long-memory, a preliminary analysis was done based on plots of autocorrelation function (ACF) of the observed data. Scaling analysis involving five methods which included rescaled range, rescaled variance, dispersional, linear and bridge detrending techniques of scaled windowed variance were applied to estimate the hurst coefficient (H) at each station. The results revealed that the ACF plots indicated a slow decay as the number lag increased. Based on the scaling analysis, the estimated H values lay within 0.7 and 0.9, indicating the existence of long-memory in the ozone time series data. In addition, it was also found that the data were persistent for the period of up to 150 days.
    Matched MeSH terms: Ozone
  4. Hisamuddin Shah, N.H., Lim, H.S., Mat Jafri, M.Z.
    MyJurnal
    Ultraviolet radiation is at shorter wavelengths than the visible spectrum (400 to 700 nm) and is divided into three components: UV-A (315 to 400 nm), UV-B (280 to 315 nm), and UV-C (less than 280 nm). Global increases in UV-B fluxes from decreasing stratospheric ozone amounts caused by anthropogenic chlorine releasing gases (mostly chlorofluorocarbons) have been a matter of public concern for the past 20 years. This surface UV irradiance data retrieved from Ozone Monitoring Instrument (OMI) from AURA spacecraft with the filename OMUVB. OMUVB contains surface UV irradiance data along with supplementary information generated using the OMI global mode measurements. In this mode each file contains the sunlit portion of a single orbit from pole-to-pole, with an approximately 2600 km wide swath composed of 60 ground pixels. The OMI measurements are used to estimate the ultraviolet (UV) radiation reaching the Earth’s surface. The product contains spectral irradiances at 305.1, 310.1, 324.1, and 380.1 nm corresponding to both the overpass time and the local solar noon. Using the correspondence latitude and longitude of Peninsular Malaysia, we can develop the pattern of distribution of UV irradiance interpolations using Sigma Plot and Adobe Photoshop.
    Matched MeSH terms: Ozone; Stratospheric Ozone
  5. Navarro MA, Atlas EL, Saiz-Lopez A, Rodriguez-Lloveras X, Kinnison DE, Lamarque JF, et al.
    Proc Natl Acad Sci U S A, 2015 Nov 10;112(45):13789-93.
    PMID: 26504212 DOI: 10.1073/pnas.1511463112
    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions.
    Matched MeSH terms: Ozone; Ozone Depletion
  6. Sadatullah S, Mohamed N, Razak F
    Ann Med Health Sci Res, 2014 Jul;4(4):526-31.
    PMID: 25221698 DOI: 10.4103/2141-9248.139301
    Ozone is an unstable gas, capable of oxidizing any biological entity. It is an effective bactericide in its gaseous as well as aqueous form.
    Matched MeSH terms: Ozone
  7. Muhammad Ridwan Fahmi, Che Zulzikrami Azner Abidin, Ong Sa, Abdul Haqi Ibrahim, Siti Nasuha Sabri, Nur Aqilah Razali, et al.
    Sains Malaysiana, 2018;47:1085-1091.
    Oxidation of p-Cresol was investigated by using ozonation process. The aim of this research is to assess the effectiveness
    of ozonation on oxidation of micropollutant such as p-Cresol. Ozonation performance was evaluated based on p-Cresol
    concentration reduction and chemical oxidation demand (COD) reduction. It was found ozonation at pH11 achieved
    the highest p-Cresol degradation, with 95.8% of p-Cresol reduced and 96.0% of COD reduced, for an initial 50 mgL-1
    of p-Cresol. The degradation of p-Cresol could be expressed by second-order of kinetic model. The second-order rate
    constant k increases as the initial pH increased, but decreases with the increasing of initial p-Cresol concentrations.
    Besides, the absorption spectra of p-Cresol over ozonation time were analyzed by spectrophotometry. The evolution of
    absorption spectra of p-Cresol degradation suggests that the oxidation of p-Cresol follows three stages mechanisms
    with cycloaddition as the first step to produce aromatic intermediates followed by ring-opening reactions, degradation
    of the intermediates, and subsequently achieved mineralization.
    Matched MeSH terms: Ozone
  8. Lee XJ, Show PL, Katsuda T, Chen WH, Chang JS
    Bioresour Technol, 2018 Dec;269:489-502.
    PMID: 30172460 DOI: 10.1016/j.biortech.2018.08.090
    Membrane bioreactor (MBR) is regarded as the state-of-the-art technology in separation processes. Surface modification techniques play a critical role in improving the conventional membrane system which is mostly hydrophobic in nature. The hydrophobic nature of membranes is known to cause fouling, resulting in high maintenance costs and shorter lifespan of MBR. Thus, surface grafting aims to improve the hydrophilicity of bio-based membrane systems. This review describes the major surface grafting techniques currently used in membranes, including photo induced grafting, plasma treatment and plasma induced grafting, radiation induced grafting, thermal induced grafting and ozone induced grafting. The advantages and disadvantages of each method is discussed along with their parametric studies. The potential applications of MBR are very promising, but some integral membrane properties could be a major challenge that hinders its wider reach. The fouling issue could be resolved with the surface grafting techniques to achieve better performance of MBRs.
    Matched MeSH terms: Ozone
  9. Marzuki Ismail, Mohd Zamri Ibrahim, Tg. Azmina Ibrahim, Ahmad Makmon Abdullah
    Sains Malaysiana, 2011;40:1179-1186.
    Time series analysis and forecasting has become a major tool in many applications in air pollution and environmental management fields. Among the most effective approaches for analyzing time series data is the model introduced by Box and Jenkins, ARIMA (Autoregressive Integrated Moving Average). In this study we used Box-Jenkins methodology to build ARIMA model for monthly ozone data taken from an Automatic Air Quality Monitoring System in Kemaman station for the period from 1996 to 2007 with a total of 144 readings. Parametric seasonally adjusted ARIMA (0,1,1) (1,1,2)12 model was successfully applied to predict the long-term trend of ozone concentration. The detection of a steady statistical significant upward trend for ozone concentration in Kemaman is quite alarming. This is likely due to sources of ozone precursors related to industrial activities from nearby areas and the increase in road traffic volume.
    Matched MeSH terms: Ozone
  10. Oladebeye AO, Oshodi AA, Amoo IA, Karim AA
    Food Chem, 2013 Nov 15;141(2):1416-23.
    PMID: 23790933 DOI: 10.1016/j.foodchem.2013.04.080
    Ozone-oxidised starches were prepared from the native starches isolated from white and red cocoyam, and white and yellow yam cultivars. The native and oxidised starches were evaluated for functional, thermal and molecular properties. The correlations between the amount of reacted ozone and carbonyl and carboxyl contents of the starches were positive, as ozone generation time (OGT) increased. Significant differences were obtained in terms of swelling power, solubility, pasting properties and textural properties of the native starches upon oxidation. The DSC data showed lower transition temperatures and enthalpies for retrograded gels compared to the gelatinized gels of the same starch types. The native starches showed CB-type XRD patterns while the oxidised starches resembled the CA-type pattern. As amylose content increased, amylopectin contents of the starches decreased upon oxidation. Similarly, an increase in Mw values were observed with a corresponding decrease in Mn values upon oxidation.
    Matched MeSH terms: Ozone/chemistry*
  11. Chan HT, Bhat R, Karim AA
    J Agric Food Chem, 2009 Jul 8;57(13):5965-70.
    PMID: 19489606 DOI: 10.1021/jf9008789
    The effects of oxidation by ozone gas on some physicochemical and functional properties of starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs). Carboxyl and carbonyl contents increased markedly in all starches with increasing OGTs. Oxidation significantly decreased the swelling power of oxidized sago and tapioca starches but increased that of oxidized corn starch. The solubility of tapioca starch decreased and sago starch increased after oxidation. However, there was an insignificant changed in the solubility of oxidized corn starch. Intrinsic viscosity [eta] of all oxidized starches decreased significantly, except for tapioca starch oxidized at 5 min OGT. Pasting properties of the oxidized starches followed different trends as OGTs increased. These results show that under similar conditions of ozone treatment, the extent of starch oxidation varies among different types of starch.
    Matched MeSH terms: Ozone/chemistry*
  12. Ghazali NA, Ramli NA, Yahaya AS, Yusof NF, Sansuddin N, Al Madhoun WA
    Environ Monit Assess, 2010 Jun;165(1-4):475-89.
    PMID: 19440846 DOI: 10.1007/s10661-009-0960-3
    Analysis and forecasting of air quality parameters are important topics of atmospheric and environmental research today due to the health impact caused by air pollution. This study examines transformation of nitrogen dioxide (NO(2)) into ozone (O(3)) at urban environment using time series plot. Data on the concentration of environmental pollutants and meteorological variables were employed to predict the concentration of O(3) in the atmosphere. Possibility of employing multiple linear regression models as a tool for prediction of O(3) concentration was tested. Results indicated that the presence of NO(2) and sunshine influence the concentration of O(3) in Malaysia. The influence of the previous hour ozone on the next hour concentrations was also demonstrated.
    Matched MeSH terms: Ozone/analysis*
  13. Tay KS, Madehi N
    Sci Total Environ, 2015 Jul 1;520:23-31.
    PMID: 25791053 DOI: 10.1016/j.scitotenv.2015.03.033
    Application of ozonation in water treatment involves complex oxidation pathways that could lead to the formation of various by-products, some of which may be harmful to living organisms. In this work, ozonation by-products of ofloxacin (OFX), a frequently detected pharmaceutical pollutant in the environment, were identified and their ecotoxicity was estimated using the Ecological Structure Activity Relationships (ECOSAR) computer program. In order to examine the role of ozone (O3) and hydroxyl radicals (∙OH) in the degradation of ofloxacin, ozonation was performed at pH2, 7 and 12. In this study, 12 new structures have been proposed for the ozonation by-products detected during the ozonation of ofloxacin. According to the identified ozonation by-products, O3 and ∙OH were found to react with ofloxacin during ozonation. The reaction between ofloxacin and O3 proceeded via hydroxylation and breakdown of heterocyclic ring with unsaturated double-bond. The reaction between ofloxacin and ·OH generated various by-products derived from the breakdown of heterocyclic ring. Ecotoxicity assessment indicated that ozonation of OFX could yield by-products of greater toxicity compared with parent compounds.
    Matched MeSH terms: Ozone/chemistry*
  14. Abdul Aziz FAB, Abd Rahman N, Mohd Ali J
    Comput Intell Neurosci, 2019;2019:6252983.
    PMID: 31239836 DOI: 10.1155/2019/6252983
    Due to the rapid development of economy and society around the world, the most urban city is experiencing tropospheric ozone or commonly known as ground-level air pollutants. The concentration of air pollutants must be identified as an early precaution step by the local environmental or health agencies. This work aims to apply the artificial neural network (ANN) in estimating the ozone concentration forecast in Bangi. It consists of input variables such as temperature, relative humidity, concentration of nitrogen dioxide, time, UVA and UVB rays obtained from routine monitoring, and data recorded. Ten hidden layer is utilized to obtain the optimized ozone concentration, which is the output layer of the ANN framework. The finding showed that the meteorology condition and emission patterns play an important part in influencing the ozone concentration. However, a single network is sufficient enough to estimate the concentration despite any circumstances. Thus, it can be concluded that ANN is able to give reliable and satisfactory estimations of ozone concentration for the following day.
    Matched MeSH terms: Ozone/analysis*
  15. Shodiya, S., Azhar, A. A., Darus, A. N.
    MyJurnal
    HCFCs, in addition to destroying the ozone layer, have been recognized as a contributing factor that increases global warming. It is widely used as working fluid in window air-conditioning system, where capillary tube serves as an expansion device. Literature reports have shown that no single refrigerant can solve the problem of ozone layer depletion and global warming. Refrigerant HC290/HC600a/HFC407C mixture, an eco-friendly refrigerant, has been recognized as an alternative to HCFC22. The objective of this study is to, for cost effectiveness, develop an empirical correlation to predict the refrigerant HC290/ HC600a/HFC407C mixture mass flow rate using statistical experimental design approach. A review of relevant literature shows that refrigerant’s mass flow rate depends on condensing temperature, degree of subcooling, inner diameter and length of capillary tube. The relationship between the mass flow rate and the four independent variables was established as an empirical mathematical correlation using central composite design (CCD), a response surface methodology (RSM). This empirical correlation was examined using analysis of variance (ANOVA) of 5% level of significance. The results of these analysis showed that the correlation fitted well with the experimental data yielding an average and standard deviation of 1.05% and 2.62%, respectively. The validity of the present correlation was further assessed by comparing it with published empirical correlation in literature and the result showed that the present correlation is consistent.
    Matched MeSH terms: Stratospheric Ozone; Ozone Depletion
  16. Zahmatkesh S, Bokhari A, Karimian M, Zahra MMA, Sillanpää M, Panchal H, et al.
    Environ Monit Assess, 2022 Oct 14;194(12):884.
    PMID: 36239735 DOI: 10.1007/s10661-022-10503-z
    In the last few decades, environmental contaminants (ECs) have been introduced into the environment at an alarming rate. There is a risk to human health and aquatic ecosystems from trace levels of emerging contaminants, including hospital wastewater (HPWW), cosmetics, personal care products, endocrine system disruptors, and their transformation products. Despite the fact that these pollutants have been introduced or detected relatively recently, information about their characteristics, actions, and impacts is limited, as are the technologies to eliminate them efficiently. A wastewater recycling system is capable of providing irrigation water for crops and municipal sewage treatment, so removing ECs before wastewater reuse is essential. Water treatment processes containing advanced ions of biotic origin and ECs of biotic origin are highly recommended for contaminants. This study introduces the fundamentals of the treatment of tertiary wastewater, including membranes, filtration, UV (ultraviolet) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Next, a detailed description of recent developments and innovations in each component of the emerging contaminant removal process is provided.
    Matched MeSH terms: Ozone*
  17. Khokhar MF, Nisar M, Noreen A, Khan WR, Hakeem KR
    Environ Sci Pollut Res Int, 2017 Jan;24(3):2827-2839.
    PMID: 27838904 DOI: 10.1007/s11356-016-7907-3
    This study emphasizes on near surface observation of chemically active trace gases such as nitrogen dioxide (NO2) over Islamabad on a regular basis. Absorption spectroscopy using backscattered extraterrestrial light source technique was used to retrieve NO2 differential slant column densities (dSCDs). Mini multi-axis-differential optical absorption spectroscopy (MAX-DOAS) instrument was used to perform ground-based measurements at Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST) Islamabad, Pakistan. Tropospheric vertical column densities (VCDs) of NO2 were derived from measured dSCDs by using geometric air mass factor approach. A case study was conducted to identify the impact of different materials (glass, tinted glass, and acrylic sheet of various thicknesses used to cover the instrument) on the retrieval of dSCDs. Acrylic sheet of thickness 5 mm was found most viable option for casing material as it exhibited negligible impact in the visible wavelength range. Tropospheric NO2 VCD derived from ground-based mini MAX-DOAS measurements exceeded two times the Pak-NEQS levels and showed a reasonable comparison (r (2) = 0.65, r = 0.81) with satellite observations (root mean square bias of 39 %) over Islamabad, Pakistan.
    Matched MeSH terms: Ozone/analysis
  18. Vijayan V, Joseph CG, Taufiq-Yap YH, Gansau JA, Nga JLH, Li Puma G, et al.
    Environ Pollut, 2024 Feb 01;342:123099.
    PMID: 38070640 DOI: 10.1016/j.envpol.2023.123099
    Palm oil mill effluent (POME) is regarded as deleterious to the environment, primarily owing to the substantial volume of waste it produces during palm oil extraction. In terms of contaminant composition, POME surpasses the pollutant content typically found in standard municipal sewage, therefore releasing it without treatment into water bodies would do irreparable damage to the environment. Main palm oil mills are normally located in the proximity of natural rivers in order to take advantage of the cheap and abundant water source. The same rivers are also used as a water source for many villages situated along the river banks. As such, it is imperative to degrade POME before its disposal into the water bodies for obvious reasons. The treatment methods used so far include the biological processes such as open ponding/land application, which consist of aerobic as well as anaerobic ponds, physicochemical treatment including membrane technology, adsorption and coagulation are successful for the mitigation of contaminants. As the above methods require large working area and it takes more time for contaminant degradation, and in consideration of the strict environmental policies as well as palm oil being the most sort of vegetable oil in several countries, numerous researchers have concentrated on the emerging technologies such as advanced oxidation processes (AOPs) to remediate POME. Methods such as the photocatalysis, Fenton process, sonocatalysis, sonophotocatalysis, ozonation have attained special importance for the degradation of POME because of their efficiency in complete mineralization of organic pollutants in situ. This review outlines the AOP technologies currently available for the mineralization of POME with importance given to sonophotocatalysis and ozonation as these treatment process removes the need to transfer the pollutant while possibly degrading the organic matter sufficiently to be used in other industry like fertilizer manufacturing.
    Matched MeSH terms: Ozone*
  19. Bais AF, Bernhard G, McKenzie RL, Aucamp PJ, Young PJ, Ilyas M, et al.
    Photochem Photobiol Sci, 2019 Mar 01;18(3):602-640.
    PMID: 30810565 DOI: 10.1039/c8pp90059k
    This report assesses the effects of stratospheric ozone depletion and anticipated ozone recovery on the intensity of ultraviolet (UV) radiation at the Earth's surface. Interactions between changes in ozone and changes in climate, as well as their effects on UV radiation, are also considered. These evaluations focus mainly on new knowledge gained from research conducted during the last four years. Furthermore, drivers of changes in UV radiation other than ozone are discussed and their relative importance is assessed. The most important of these factors, namely clouds, aerosols and surface reflectivity, are related to changes in climate, and some of their effects on short- and long-term variations of UV radiation have already been identified from measurements. Finally, projected future developments in stratospheric ozone, climate, and other factors affecting UV radiation have been used to estimate changes in solar UV radiation from the present to the end of the 21st century. New instruments and methods have been assessed with respect to their ability to provide useful and accurate information for monitoring solar UV radiation at the Earth's surface and for determining relevant exposures of humans. Evidence since the last assessment reconfirms that systematic and accurate long-term measurements of UV radiation and stratospheric ozone are essential for assessing the effectiveness of the Montreal Protocol and its Amendments and adjustments. Finally, we have assessed aspects of UV radiation related to biological effects and human health, as well as implications for UV radiation from possible solar radiation management (geoengineering) methods to mitigate climate change.
    Matched MeSH terms: Stratospheric Ozone/analysis*
  20. Ilyas M, Apandi AB
    Med J Malaysia, 1979 Dec;34(2):181-3.
    PMID: 548725
    Matched MeSH terms: Ozone
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links