Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Abdul Hamid SH, Lananan F, Kasan NA, Yasmin Sayid Abdullah SH, Endut A
    Chemosphere, 2022 Nov;307(Pt 4):136005.
    PMID: 35973500 DOI: 10.1016/j.chemosphere.2022.136005
    The physical profile and chemical composition of growing media are vital in evaluating fish waste filtration efficiency and plant growth performance in aquaponics. The present study reported and compared the physical and chemical evaluation of the novel fabricated Kaolina, gravel, and commercially used lightweight expanded clay aggregate (LECA) as growing medias in aquaponics. Field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX) was utilized to analyze the growing media's chemical composition and structural characterization. The resultant effect of these growing medias on water quality and the growth performance of Clarias gariepinus and Lactuca sativa were also reported. Kaolina exhibited an excellent physical profile (42.95 ± 1.39%) in water absorption capacity as compared to LECA (35.90 ± 1.28%) and gravel (1.97 ± 0.25%), showing a significant difference at p 
    Matched MeSH terms: Nitrogen Dioxide*
  2. Kurniawan R, Budi Alamsyah AR, Fudholi A, Purwanto A, Sumargo B, Gio PU, et al.
    Environ Pollut, 2023 Oct 01;334:122212.
    PMID: 37454714 DOI: 10.1016/j.envpol.2023.122212
    The high concentration of nitrogen dioxide (NO2) is to blame for West Java's poor Air Quality Index (AQI). So, this study aims to determine the influence of industrial activity as reflected by the value of its imports and exports, wind speed, and ozone (O3) on the high concentration of tropospheric NO2. The method used is the econometric Vector Error Correction Model (VECM) approach to capture the existence of a short-term and long-term relationship between tropospheric NO2 and its predictor variables. The data used in this study is in the form of monthly time series data for the 2018-2022 period sourced from satellite images (Sentinel-5P and ECMWF Climate Reanalysis) and publications of the Central Bureau of Statistics (BPS-Statistics Indonesia). The results explained that, in the short-term, tropospheric NO2 and O3 influence each other as they would in a photochemical reaction. In the long-term, exports from the industrial sector and wind speed have a significant effect on the concentration of tropospheric NO2. The short-term effect occurs directly in the first month after the shock, while the long-term effect occurs in the second month after the shock. Wind gusts originating from industrial areas cause air conditions to be even more alarming because tropospheric NO2 pollutants spread throughout the region in West Java. Based on the coefficient correlation result, the high number of pneumonia cases is one of the impacts caused by air pollution.
    Matched MeSH terms: Nitrogen Dioxide/analysis
  3. Huang SL, Zhang WH, Ling Y, Ng SW, Luo HK, Hor TS
    Chem Asian J, 2015 Oct;10(10):2117-20.
    PMID: 25965032 DOI: 10.1002/asia.201500231
    Four porous coordination networks have been synthesized from 1,4-benzenedicarboxylate with Cl, Br, I, and NO2 substituents whose different spatial differences are sufficient to influence the coordination mode of adjacent carboxyl moieties to unlock an inter-penetrating framework to give isostructural structures. Their size and polarity differences account for the diverging CO2 adsorption performances.
    Matched MeSH terms: Nitrogen Dioxide
  4. Ghazali NA, Ramli NA, Yahaya AS, Yusof NF, Sansuddin N, Al Madhoun WA
    Environ Monit Assess, 2010 Jun;165(1-4):475-89.
    PMID: 19440846 DOI: 10.1007/s10661-009-0960-3
    Analysis and forecasting of air quality parameters are important topics of atmospheric and environmental research today due to the health impact caused by air pollution. This study examines transformation of nitrogen dioxide (NO(2)) into ozone (O(3)) at urban environment using time series plot. Data on the concentration of environmental pollutants and meteorological variables were employed to predict the concentration of O(3) in the atmosphere. Possibility of employing multiple linear regression models as a tool for prediction of O(3) concentration was tested. Results indicated that the presence of NO(2) and sunshine influence the concentration of O(3) in Malaysia. The influence of the previous hour ozone on the next hour concentrations was also demonstrated.
    Matched MeSH terms: Nitrogen Dioxide/analysis*
  5. Althuwaynee OF, Pokharel B, Aydda A, Balogun AL, Kim SW, Park HJ
    J Expo Sci Environ Epidemiol, 2021 07;31(4):709-726.
    PMID: 33159165 DOI: 10.1038/s41370-020-00271-8
    Accurate identification of distant, large, and frequent sources of emission in cities is a complex procedure due to the presence of large-sized pollutants and the existence of many land use types. This study aims to simplify and optimize the visualization mechanism of long time-series of air pollution data, particularly for urban areas, which is naturally correlated in time and spatially complicated to analyze. Also, we elaborate different sources of pollution that were hitherto undetectable using ordinary plot models by leveraging recent advances in ensemble statistical approaches. The high performing conditional bivariate probability function (CBPF) and time-series signature were integrated within the R programming environment to facilitate the study's analysis. Hourly air pollution data for the period between 2007 to 2016 is collected using four air quality stations, (ca0016, ca0058, ca0054, and ca0025), situated in highly urbanized locations that are characterized by complex land use and high pollution emitting activities. A conditional bivariate probability function (CBPF) was used to analyze the data, utilizing pollutant concentration values such as Sulfur dioxide (SO2), Nitrogen oxides (NO2), Carbon monoxide (CO) and Particulate Matter (PM10) as a third variable plotted on the radial axis, with wind direction and wind speed variables. Generalized linear model (GLM) and sensitivity analysis are applied to verify and visualize the relationship between Air Pollution Index (API) of PM10 and other significant pollutants of GML outputs based on quantile values. To address potential future challenges, we forecast 3 months PM10 values using a Time Series Signature statistical algorithm with time functions and validated the outcome in the 4 stations. Analysis of results reveals that sources emitting PM10 have similar activities producing other pollutants (SO2, CO, and NO2). Therefore, these pollutants can be detected by cross selection between the pollution sources in the affected city. The directional results of CBPF plot indicate that ca0058 and ca0054 enable easier detection of pollutants' sources in comparison to ca0016 and ca0025 due to being located on the edge of industrial areas. This study's CBPF technique and time series signature analysis' outcomes are promising, successfully elaborating different sources of pollution that were hitherto undetectable using ordinary plot models and thus contribute to existing air quality assessment and enhancement mechanisms.
    Matched MeSH terms: Nitrogen Dioxide/analysis
  6. Mohd Isa KN, Jalaludin J, Mohd Elias S, Mohamed N, Hashim JH, Hashim Z
    PMID: 35457448 DOI: 10.3390/ijerph19084580
    Numerous epidemiological studies have evaluated the association of fractional exhaled nitric oxide (FeNO) and indoor air pollutants, but limited information available of the risks between schools located in suburban and urban areas. We therefore investigated the association of FeNO levels with indoor particulate matter (PM10 and PM2.5), and nitrogen dioxide (NO2) exposure in suburban and urban school areas. A comparative cross-sectional study was undertaken among secondary school students in eight schools located in the suburban and urban areas in the district of Hulu Langat, Selangor, Malaysia. A total of 470 school children (aged 14 years old) were randomly selected, their FeNO levels were measured, and allergic skin prick tests were conducted. The PM2.5, PM10, NO2, and carbon dioxide (CO2), temperature, and relative humidity were measured inside the classrooms. We found that the median of FeNO in the school children from urban areas (22.0 ppb, IQR = 32.0) were slightly higher as compared to the suburban group (19.5 ppb, IQR = 24.0). After adjustment of potential confounders, the two-level hierarchical multiple logistic regression models showed that the concentrations of PM2.5 were significantly associated with elevated of FeNO (>20 ppb) in school children from suburban (OR = 1.42, 95% CI = 1.17−1.72) and urban (OR = 1.30, 95% CI = 1.10−1.91) areas. Despite the concentrations of NO2 being below the local and international recommendation guidelines, NO2 was found to be significantly associated with the elevated FeNO levels among school children from suburban areas (OR = 1.11, 95% CI = 1.06−1.17). The findings of this study support the evidence of indoor pollutants in the school micro-environment associated with FeNO levels among school children from suburban and urban areas.
    Matched MeSH terms: Nitrogen Dioxide/analysis
  7. Khokhar MF, Nisar M, Noreen A, Khan WR, Hakeem KR
    Environ Sci Pollut Res Int, 2017 Jan;24(3):2827-2839.
    PMID: 27838904 DOI: 10.1007/s11356-016-7907-3
    This study emphasizes on near surface observation of chemically active trace gases such as nitrogen dioxide (NO2) over Islamabad on a regular basis. Absorption spectroscopy using backscattered extraterrestrial light source technique was used to retrieve NO2 differential slant column densities (dSCDs). Mini multi-axis-differential optical absorption spectroscopy (MAX-DOAS) instrument was used to perform ground-based measurements at Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST) Islamabad, Pakistan. Tropospheric vertical column densities (VCDs) of NO2 were derived from measured dSCDs by using geometric air mass factor approach. A case study was conducted to identify the impact of different materials (glass, tinted glass, and acrylic sheet of various thicknesses used to cover the instrument) on the retrieval of dSCDs. Acrylic sheet of thickness 5 mm was found most viable option for casing material as it exhibited negligible impact in the visible wavelength range. Tropospheric NO2 VCD derived from ground-based mini MAX-DOAS measurements exceeded two times the Pak-NEQS levels and showed a reasonable comparison (r (2) = 0.65, r = 0.81) with satellite observations (root mean square bias of 39 %) over Islamabad, Pakistan.
    Matched MeSH terms: Nitrogen Dioxide/analysis*
  8. Alhasa KM, Mohd Nadzir MS, Olalekan P, Latif MT, Yusup Y, Iqbal Faruque MR, et al.
    Sensors (Basel), 2018 Dec 11;18(12).
    PMID: 30544953 DOI: 10.3390/s18124380
    Conventional air quality monitoring systems, such as gas analysers, are commonly used in many developed and developing countries to monitor air quality. However, these techniques have high costs associated with both installation and maintenance. One possible solution to complement these techniques is the application of low-cost air quality sensors (LAQSs), which have the potential to give higher spatial and temporal data of gas pollutants with high precision and accuracy. In this paper, we present DiracSense, a custom-made LAQS that monitors the gas pollutants ozone (O₃), nitrogen dioxide (NO₂), and carbon monoxide (CO). The aim of this study is to investigate its performance based on laboratory calibration and field experiments. Several model calibrations were developed to improve the accuracy and performance of the LAQS. Laboratory calibrations were carried out to determine the zero offset and sensitivities of each sensor. The results showed that the sensor performed with a highly linear correlation with the reference instrument with a response-time range from 0.5 to 1.7 min. The performance of several calibration models including a calibrated simple equation and supervised learning algorithms (adaptive neuro-fuzzy inference system or ANFIS and the multilayer feed-forward perceptron or MLP) were compared. The field calibration focused on O₃ measurements due to the lack of a reference instrument for CO and NO₂. Combinations of inputs were evaluated during the development of the supervised learning algorithm. The validation results demonstrated that the ANFIS model with four inputs (WE OX, AE OX, T, and NO₂) had the lowest error in terms of statistical performance and the highest correlation coefficients with respect to the reference instrument (0.8 < r < 0.95). These results suggest that the ANFIS model is promising as a calibration tool since it has the capability to improve the accuracy and performance of the low-cost electrochemical sensor.
    Matched MeSH terms: Nitrogen Dioxide
  9. Hong FJ, Chong KW, Low YY, Thomas NF, Kam TS
    Chem Asian J, 2015 Oct;10(10):2207-20.
    PMID: 26097065 DOI: 10.1002/asia.201500488
    A systematic study on the FeCl3-induced oxidation of 1,2-diarylalkenes was carried out with the focus on the variation of product type as a function of aromatic substitution, as well as to compare the reactivity of stilbene cation radicals generated via Fe(III) oxidation with those generated by anodic oxidation. The aromatic substituents were found to fall into three main categories, namely those that give rise to tetralins and/or dehydrotetralins, those that give products possessing pallidol and ampelopsin F-type carbon skeletons, and last, those that give rise to trimeric products, indanes, and dehydrotetralins/tetralins. The latter are those stilbenes with a para-methoxy substituent in one ring and a para- or meta-EWG (CF3, NO2, Cl, F) in the other, and represent the most prominent departure when compared with the behavior of the same stilbenes under the conditions of anodic oxidation. Reaction pathways to rationalize the formation of the different products are presented.
    Matched MeSH terms: Nitrogen Dioxide
  10. Atarod P, Khlaife E, Aghbashlo M, Tabatabaei M, Hoang AT, Mobli H, et al.
    J Hazard Mater, 2021 04 05;407:124369.
    PMID: 33160782 DOI: 10.1016/j.jhazmat.2020.124369
    This study was set up to model and optimize the performance and emission characteristics of a diesel engine fueled with carbon nanoparticle-dosed water/‎diesel emulsion fuel using a combination of soft computing techniques. Adaptive neuro-fuzzy inference system tuned by particle ‎swarm algorithm was used for modeling the performance and emission parameters of the engine, while optimization of the engine operating parameters and the fuel composition was conducted via multiple-objective particle ‎swarm algorithm. The model input variables were: injection timing (35-41° CA BTDC), engine load (0-100%), nanoparticle dosage (0-150 μM), and water content (0-3 wt%). The model output variables included: brake specific fuel consumption, brake thermal efficiency, as well as carbon monoxide, carbon dioxide, nitrogen oxides, and unburned hydrocarbons emission concentrations. The training and testing of the modeling system were performed on the basis of 60 data patterns obtained from the experimental trials. The effects of input variables on the performance and emission characteristics of the engine were thoroughly analyzed and comprehensively discussed as well. According to the experimental results, injection timing and engine load could significantly affect all the investigated performance and emission parameters. Water and nanoparticle addition to diesel could markedly affect some performance and emission parameters. The modeling system could predict the output parameters with an R2 > 0.93, MSE nitrogen oxides, and unburned hydrocarbon emission concentrations ‎were found to be ‎7.26‎ vol%‎, ‎0.46 vol%‎, ‎95.7‎ ppm, and‎ 36.2 ppm, respectively, under the ‎selected optimal operating conditions while the quantity of brake thermal efficiency was found at an acceptable level (‎34.0‎%).‎ In general, the applied soft computing combination appears to be a promising approach to model and optimize operating parameters and fuel composition of diesel engines.
    Matched MeSH terms: Nitrogen Dioxide
  11. Jie Y, Ismail NH, Jie X, Isa ZM
    J Formos Med Assoc, 2011 Sep;110(9):555-63.
    PMID: 21930065 DOI: 10.1016/j.jfma.2011.07.003
    This review summarizes the results of epidemiological studies focusing on the detrimental effects of home environmental factors on asthma morbidity in adults. We reviewed the literature on indoor air quality (IAQ), physical and sociodemographic factors, and asthma morbidity in homes, and identified commonly reported asthma, allergic, and respiratory symptoms involving the home environment. Reported IAQ and asthma morbidity data strongly indicated positive associations between indoor air pollution and adverse health effects in most studies. Indoor factors most consistently associated with asthma and asthma-related symptoms in adults included fuel combustion, mold growth, and environmental tobacco smoke. Environmental exposure may increase an adult's risk of developing asthma and also may increase the risk of asthma exacerbations. Evaluation of present IAQ levels, exposure characteristics, and the role of exposure to these factors in relation to asthma morbidity is important for improving our understanding, identifying the burden, and for developing and implementing interventions aimed at reducing asthma morbidity.
    Matched MeSH terms: Nitrogen Dioxide/adverse effects
  12. Abdullah L, Khalid ND
    Environ Monit Assess, 2012 Nov;184(11):6957-65.
    PMID: 22160435 DOI: 10.1007/s10661-011-2472-1
    Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
    Matched MeSH terms: Nitrogen Dioxide/analysis
  13. Afroz R, Hassan MN, Ibrahim NA
    Environ Res, 2003 Jun;92(2):71-7.
    PMID: 12854685
    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.
    Matched MeSH terms: Nitrogen Dioxide/adverse effects
  14. Awang MB, Jaafar AB, Abdullah AM, Ismail MB, Hassan MN, Abdullah R, et al.
    Respirology, 2000 Jun;5(2):183-96.
    PMID: 10894109
    OBJECTIVE: Observations have been made on the long-term trends of major air pollutants in Malaysia including nitrogen dioxide, carbon monoxide, the ozone and total suspended particulate matter (particularly PM10), and sulfur dioxide, emitted from industrial and urban areas from early 1970s until late 1998.

    METHODOLOGY: The data show that the status of atmospheric environment in Malaysia, in particular in highly industrialized areas such as Klang Valley, was determined both by local and transboundary emissions and could be described as haze and non-haze periods.

    RESULTS: During the non-haze periods, vehicular emissions accounted for more than 70% of the total emissions in the urban areas and have demonstrated two peaks in the diurnal variations of the aforementioned air pollutants, except ozone. The morning 'rush-hour' peak was mainly due to vehicle emissions, while the late evening peak was mainly attributed to meteorological conditions, particularly atmospheric stability and wind speed. Total suspended particulate matter was the main pollutant with its concentrations at few sites often exceeding the Recommended Malaysia Air Quality Guidelines. The levels of other pollutants were generally within the guidelines. Since 1980, six major haze episodes were officially reported in Malaysia: April 1983, August 1990, June 1991, October 1991, August to October 1994, and July to October 1997. The 1997 haze episode was the worst ever experienced by the country. Short-term observations using continuous monitoring systems during the haze episodes during these periods clearly showed that suspended particulate matter (PM10) was the main cause of haze and was transboundary in nature. Large forest fires in parts of Sumatra and Kalimantan during the haze period, clearly evident in satellite images, were identified as the probable key sources of the widespread heavy haze that extended across Southeast Asia from Indonesia to Singapore, Malaysia and Brunei. The results of several studies have also provided strong evidence that biomass burning is the dominating source of particulate matter. The severity and extent of 1997's haze pollution was unprecedented, affecting some 300 million people across the region. The amount of economic costs suffered by Southeast Asian countries during this environmental disaster was enormous and is yet to be fully determined. Among the important sectors severely affected were air and land transport, shipping, construction, tourism and agro-based industries. The economic cost of the haze-related damage to Malaysia presented in this study include short-term health costs, production losses, tourism-related losses and the cost of avertive action. Although the cost reported here is likely to be underestimated, they are nevertheless significant (roughly RM1 billion).

    CONCLUSIONS: The general air quality of Malaysia since 1970 has deteriorated. Studies have shown that should no effective countermeasures be introduced, the emissions of sulfur dioxide, nitrogen oxides, particulate matter, hydrocarbons and carbon monoxide in the year 2005 would increase by 1.4, 2.12, 1.47 and 2.27 times, respectively, from the 1992 levels.

    Matched MeSH terms: Nitrogen Dioxide/analysis
  15. Kanniah KD, Kamarul Zaman NAF, Kaskaoutis DG, Latif MT
    Sci Total Environ, 2020 Sep 20;736:139658.
    PMID: 32492613 DOI: 10.1016/j.scitotenv.2020.139658
    Since its first appearance in Wuhan, China at the end of 2019, the new coronavirus (COVID-19) has evolved a global pandemic within three months, with more than 4.3 million confirmed cases worldwide until mid-May 2020. As many countries around the world, Malaysia and other southeast Asian (SEA) countries have also enforced lockdown at different degrees to contain the spread of the disease, which has brought some positive effects on natural environment. Therefore, evaluating the reduction in anthropogenic emissions due to COVID-19 and the related governmental measures to restrict its expansion is crucial to assess its impacts on air pollution and economic growth. In this study, we used aerosol optical depth (AOD) observations from Himawari-8 satellite, along with tropospheric NO2 column density from Aura-OMI over SEA, and ground-based pollution measurements at several stations across Malaysia, in order to quantify the changes in aerosol and air pollutants associated with the general shutdown of anthropogenic and industrial activities due to COVID-19. The lockdown has led to a notable decrease in AOD over SEA and in the pollution outflow over the oceanic regions, while a significant decrease (27% - 30%) in tropospheric NO2 was observed over areas not affected by seasonal biomass burning. Especially in Malaysia, PM10, PM2.5, NO2, SO2, and CO concentrations have been decreased by 26-31%, 23-32%, 63-64%, 9-20%, and 25-31%, respectively, in the urban areas during the lockdown phase, compared to the same periods in 2018 and 2019. Notable reductions are also seen at industrial, suburban and rural sites across the country. Quantifying the reductions in major and health harmful air pollutants is crucial for health-related research and for air-quality and climate-change studies.
    Matched MeSH terms: Nitrogen Dioxide/analysis
  16. Azmi SZ, Latif MT, Ismail AS, Juneng L, Jemain AA
    Air Qual Atmos Health, 2010 Mar;3(1):53-64.
    PMID: 20376168
    Over the last decades, the development of the Klang Valley (Malaysia), as an urban commercial and industrial area, has elevated the risk of atmospheric pollutions. There are several significant sources of air pollutants which vary depending on the background of the location they originate from. The aim of this study is to determine the trend and status of air quality and their correlation with the meteorological factors at different air quality monitoring stations in the Klang Valley. The data of five major air pollutants (PM(10), CO, SO(2), O(3), NO(2)) were recorded at the Alam Sekitar Sdn Bhd (ASMA) monitoring stations in the Klang Valley, namely Petaling Jaya (S1), Shah Alam (S2) and Gombak (S3). The data from these three stations were compared with the data recorded at Jerantut, Pahang (B), a background station established by the Malaysian Department of Environment. Results show that the concentrations of CO, NO(2) and SO(2) are higher at Petaling Jaya (S1) which is due to influence of heavy traffic. The concentrations of PM(10) and O(3,) however, are predominantly related to regional tropical factors, such as the influence of biomass burning and of ultra violet radiation from sunlight. They can, though, also be influenced by local sources. There are relatively stronger inter-pollutant correlations at the stations of Gombak and Shah Alam, and the results also suggest that heavy traffic flow induces high concentrations of PM(10), CO, NO(2) and SO(2) at the three sampling stations. Additionally, meteorological factors, particularly the ambient temperature and wind speed, may influence the concentration of PM(10) in the atmosphere.
    Matched MeSH terms: Nitrogen Dioxide
  17. Minhat FI, Yahya K, Talib A, Ahmad O
    Trop Life Sci Res, 2013 Aug;24(1):35-43.
    PMID: 24575240 MyJurnal
    The distribution of benthic Foraminifera throughout the coastal waters of Taman Negara Pulau Pinang (Penang National Park), Malaysia was studied to assess the impact of various anthropogenic activities, such as fishing, ecotourism and floating cage culture. Samples were obtained at 200 m intervals within the subtidal zone, extending up to 1200 m offshore at Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh. The depth within coastal waters ranged between 1.5 m and 10.0 m, with predominantly muddy substrate at most stations. Water quality analysis showed little variation in micronutrient (nitrite, NO2; nitrate, NO3; ammonia, NH4 and orthophosphate, PO4) concentrations between sampling stations. Temperature (29.6±0.48°C), salinity (29.4±0.28 ppt), dissolved oxygen content (5.4±0.95 mg/l) and pH (8.5± 0.13) also showed little fluctuation between stations. A total of nine genera of foraminifera were identified in the study (i.e., Ammonia, Elphidium, Ammobaculites, Bigenerina, Quinqueloculina, Reopax, Globigerina, Textularia and Nonion). The distribution of benthic foraminifera was dominated by opportunistic groups that have a high tolerance to anthropogenic stressors. Ammonia had the highest frequency of occurrence (84.7%), followed by Bigenerina (50%), Ammobaculites (44.2%) and Elphidium (38.9%). The Ammonia-Elphidium Index (AEI) was used to describe the hypoxic condition of benthic communities at all sites. Teluk Bahang had the highest AEI value. The foraminiferal assemblages and distribution in Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh showed no correlation with physical or chemical environmental parameters.
    Matched MeSH terms: Nitrogen Dioxide
  18. Shaari AL, Surif M, Latiff FA, Omar WM, Ahmad MN
    Trop Life Sci Res, 2011 May;22(1):51-69.
    PMID: 24575209
    Many reports have revealed that the abundance of microalgae in shrimp ponds vary with changes in environmental factors such as light, temperature, pH, salinity and nutrient level throughout a shrimp culture period. In this study, shrimp cultivation period was divided into three stages (initial = week 0-5, mid = week 6-10 and final = week 11-15). Physical and chemical parameters throughout the cultivation period were studied and species composition of microalgae was monitored. Physical parameters were found to fluctuate widely with light intensity ranging between 182.23-1278 μmol photon m(-2)s(-1), temperature between 29.56°C -31.59°C, dissolved oxygen (DO) between 4.56-8.21 mg/l, pH between 7.65-8.49 and salinity between 20‰-30‰. Ammonium (NH4 (+)-N), nitrite (NO2 (-)-N), nitrate (NO3 (-)-N), and orthophosphate (PO4 (3-)-P) concentrations in the pond at all cultivation stages ranged from 0.017 to 0.38 mg/l, 0.24 to 2.12 mg/l, 0.06 to 0.98 mg/l and 0.16 to 1.93 mg/l respectively. Statistical test (ANOVA) showed that there were no significant difference (p<0.05) in nutrients concentrations among the cultivation stages. All nutrients concentrations however were still in the tolerable level and safe for shrimp culture. The chlorophyll a contents were found to range from 5.03±2.17 to 32.61±0.35 μg/l throughout the cultivation period. A total of 19 microalgae species were found in the shrimp pond, with diatoms contributing up to 72% of the species followed by Chlorophyta (11%) and Cyanophyta (11%). However, weekly species abundance varied through the study period. At the initial stage, when there were no shrimps in the pond, Anabaena spp. and Oscillatoria spp. (Cyanophyta) were the dominant species, followed by Chlorella sp. and Dunaliella sp. (Chlorophyta). When shrimps were introduced into the pond, Amphora sp., Navicula sp. Gyrosigma sp. and Nitzschia sp. (diatoms) started to exist. At the middle and towards the final stage of the shrimp culture period diatoms were the dominant species. The Chlorophyta (Chlorella sp.) domination took place only twice, which was at week 2 and 13. The absence of some of the coastal water microalgae species in the shrimp pond was most likely due to the fact that they could not tolerate the physicochemical factors of harsh environment. In this study, Cylindrotheca closterium was regarded as the most tolerant species among the microalgae due to its ability to exist for 6 weeks out of the 15 weeks of cultivation.
    Matched MeSH terms: Nitrogen Dioxide
  19. Bharudin I, Abdul Rahim SN, Abu Bakar MF, Ibrahim SN, Kamaruddin S, Latif MT, et al.
    Data Brief, 2018 Aug;19:2416-2419.
    PMID: 30229114 DOI: 10.1016/j.dib.2018.07.020
    Lichen is a symbiotic organism that exists as a single composite body consisting of a mycobiont (fungus) and a photobiont (algae or a cyanobacterium). Many lichen species are considered as extremophiles due to their tolerance to radiation, desiccation, temperature and pollution. However, not all lichen species are tolerant to harsh environmental conditions as several species are sensitive for example to nitrogen, sulphur, acidity, heavy metals, halogens (e.g. fluoride) and ozone. Thus, to better understand why some lichens can withstand exposure to pollutants as opposed to those that are susceptible, we focused on the lichen species of Dirinaria known for their wide distribution in the tropics, subtropics and pantropical, and moderate tolerance to air pollution. Their moderate tolerance to air pollution affords them to thrive in good air quality environments as well as polluted air environments. Lichen samples of Dirinaria sp., UKM-J1 and UKM-K1, were respectively collected from two areas with different levels of air quality based on Air Pollutant Index or API (with index pollutant criteria of PM10, carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide) in the outskirt of Jerantut (UKM-J1), a rural area in the middle of Peninsular Malaysia and the township of Klang (UKM-K1), in a busy area of the Klang Valley, Malaysia. API was monitored throughout 2012-2013 whereby the sample collection site in Klang showed markedly higher concentrations of pollutants in all the index pollutant criteria as compared to that of Jerantut. We performed transcriptome sequencing using Illumina RNA-seq technology and de novo assembly of the transcripts from the lichen samples. Raw reads from both libraries were deposited in the NCBI database with the accession number SRP138994.
    Matched MeSH terms: Nitrogen Dioxide
  20. Wong SF, Yap PS, Mak JW, Chan WLE, Khor GL, Ambu S, et al.
    Environ Health, 2020 04 03;19(1):37.
    PMID: 32245482 DOI: 10.1186/s12940-020-00579-w
    BACKGROUND: Malaysia has the highest rate of diabetes mellitus (DM) in the Southeast Asian region, and has ongoing air pollution and periodic haze exposure.

    METHODS: Diabetes data were derived from the Malaysian National Health and Morbidity Surveys conducted in 2006, 2011 and 2015. The air pollution data (NOx, NO2, SO2, O3 and PM10) were obtained from the Department of Environment Malaysia. Using multiple logistic and linear regression models, the association between long-term exposure to these pollutants and prevalence of diabetes among Malaysian adults was evaluated.

    RESULTS: The PM10 concentration decreased from 2006 to 2014, followed by an increase in 2015. Levels of NOx decreased while O3 increased annually. The air pollutant levels based on individual modelled air pollution exposure as measured by the nearest monitoring station were higher than the annual averages of the five pollutants present in the ambient air. The prevalence of overall diabetes increased from 11.4% in 2006 to 21.2% in 2015. The prevalence of known diabetes, underdiagnosed diabetes, overweight and obesity also increased over these years. There were significant positive effect estimates of known diabetes at 1.125 (95% CI, 1.042, 1.213) for PM10, 1.553 (95% CI, 1.328, 1.816) for O3, 1.271 (95% CI, 1.088, 1.486) for SO2, 1.124 (95% CI, 1.048, 1.207) for NO2, and 1.087 (95% CI, 1.024, 1.153) for NOx for NHMS 2006. The adjusted annual average levels of PM10 [1.187 (95% CI, 1.088, 1.294)], O3 [1.701 (95% CI, 1.387, 2.086)], NO2 [1.120 (95% CI, 1.026, 1.222)] and NOx [1.110 (95% CI, 1.028, 1.199)] increased significantly from NHMS 2006 to NHMS 2011 for overall diabetes. This was followed by a significant decreasing trend from NHMS 2011 to 2015 [0.911 for NO2, and 0.910 for NOx].

    CONCLUSION: The findings of this study suggest that long-term exposure to O3 is an important associated factor of underdiagnosed DM risk in Malaysia. PM10, NO2 and NOx may have mixed effect estimates towards the risk of DM, and their roles should be further investigated with other interaction models. Policy and intervention measures should be taken to reduce air pollution in Malaysia.

    Matched MeSH terms: Nitrogen Dioxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links