In recent years, injection moulding process is one of the most advanced and efficient manufacturing processes for mass production of plastic bottles. However, a good quality of parison is difficult to achieve due to uncontrollable humidity, pressure inlet and water inlet velocity. This paper investigates the effect of using multiple mould cavities to improve the process fill time and injection pressure in the production of PET plastic bottles using MoldFlow software. The modelling of parison was developed using CATIA with the consideration of every part of the parison. MoldFlow software was used to analyse the flow of 20 g parison with different cavity numbers (1, 8, 16, 24 cavity), as well as its corresponding runner size towards its fill time and injection pressure. Other important parameters that affect the production of parison, such as melting temperature, mould temperature, atmospheric temperature and cooling time, were remained constant. The fill time required to produce 24 moulds was improved by 60% compared to using 8 mould cavity only, and this enable the production of more plastic bottles in a day. Therefore, fill time and injection pressure are two important parameters to be considered in the injection moulding process, especially to reduce parison defect and increase its production rate.