Affiliations 

  • 1 Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
Environ Entomol, 2018 12 07;47(6):1582-1585.
PMID: 30165432 DOI: 10.1093/ee/nvy127

Abstract

Megaselia scalaris (Loew) (Diptera: Phoridae) provides great evidential value in estimating the postmortem interval (PMI) compared with other dipterans due to its common occurrence on human corpses both indoors and in concealed environments. Studies have focused on the effect of temperature, larval diet, and photoperiod on the development of the species; however, knowledge of M. scalaris development at different moisture levels is insufficient. This study aimed to investigate the effects of substrate moisture on the larval development time, pupal recovery, pupal weight, adult emergence, and adult head width of M. scalaris. The larvae were reared in five replicates on substrates with six moisture levels ranging from 50 to 90%. Larvae and puparia were sampled daily, and the collection time, number, and weight were recorded, measured, and then compared using multivariate analysis of variance with a post hoc least significant difference test. Larvae developed most quickly (3.75 ± 0.04 d) at 50% substrate moisture; the larvae were able to survive in extremely wet substrates (90% moisture), but the development time was significantly longer (6.48 ± 0.19 d). Moisture greatly influenced the pupation rate and adult emergence but showed a weak effect on the pupae weight and adult head width. Due to the significance of moisture on the development of M. scalaris, PMI estimation using M. scalaris with cadavers of different moisture content must be carefully conducted to avoid inaccuracy.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.