Affiliations 

  • 1 Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • 2 Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • 3 Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. Electronic address: jacttyc@sunway.edu.my
  • 4 Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. Electronic address: edwardt@sunway.edu.my
J. Inorg. Biochem., 2019 03;192:107-118.
PMID: 30640150 DOI: 10.1016/j.jinorgbio.2018.12.017

Abstract

Four binuclear phosphanesilver(I) dithiocarbamates, {cyclohexyl3PAg(S2CNRR')}2 for R = R' = Et (1), CH2CH2 (2), CH2CH2OH (3) and R = Me, R' = CH2CH2OH (4) have been synthesised and characterised by spectroscopy and crystallography, and feature tri-connective, μ2-bridging dithiocarbamate ligands and distorted tetrahedral geometries based on PS3 donor sets. The compounds were evaluated for anti-bacterial activity against a total of 12 clinically important pathogens. Based on minimum inhibitory concentration (MIC) and cell viability tests (human embryonic kidney cells, HEK 293), 1-4 are specifically active against Gram-positive bacteria while demonstrating low toxicity; 3 and 4 are active against methicillin resistant S. aureus (MRSA). Across the series, 4 was most effective and was more active than the standard anti-biotic chloramphenicol. Time kill assays reveal 1-4 to exhibit both time- and concentration-dependent pharmacokinetics against susceptible bacteria. Compound 4 demonstrates rapid (within 2 h) bactericidal activity at 1 and 2 × MIC to reach a maximum decrease of 5.2 log10 CFU/mL against S. aureus (MRSA).

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications