The aim of this work was to recover the cellulose fibers from EFB using low-transition-temperature-mixtures (LTTMs) as a green delignification approach. The hydrogen bonding of LTTMs observed in 1H NMR tends to disrupt the three-dimensional structure of lignin and further remove the lignin from EFB. Delignification process of EFB strands and EFB powder were performed using standard l-malic acid and cactus malic acid-LTTMs. The recovered cactus malic acid-LTTMs showed higher glucose concentration of 8.07 mg/mL than the recovered l-malic acid LTTMs (4.15 mg/mL). This implies that cactus malic acid-LTTMs had higher delignification efficiency which led to higher amount of cellulose hydrolyzed into glucose. The cactus malic acid-LTTMs-delignified EFB was the most feasible fibers for making paper due to its lowest kappa number of 69.84. The LTTMs-delignified EFB has great potential to be used for making specialty papers in pulp and paper industry.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.