Displaying all 10 publications

Abstract:
Sort:
  1. Yang J, Cánovas-Márquez JT, Li P, Li S, Niu J, Wang X, et al.
    J Agric Food Chem, 2021 Aug 25;69(33):9632-9641.
    PMID: 34428900 DOI: 10.1021/acs.jafc.1c03307
    Malate as an important intermediate metabolite, its subcellular location, and concentration have a significant impact on fungal lipid metabolism. Previous studies showed that the mitochondrial malate transporter plays an important role in lipid accumulation in Mucor circinelloides by manipulating intracellular malate concentration. However, the role of plasma membrane malate transporters in oleaginous fungi remains unexplored. Therefore, in this work, two plasma membrane malate transporters "2-oxoglutarate:malate antiporters" (named SoDIT-a and SoDIT-b) of M. circinelloides WJ11 were deleted, and the consequences in growth capacity, lipid accumulation, and metabolism were analyzed. The results showed that deletion of sodit-a or/and sodit-b reduced the extracellular malate, confirming that the products of both genes participate in malate transportation. In parallel, the lipid contents in mutants increased approximately 10-40% higher than that in the control strain, suggesting that the defect in plasma membrane malate transport results in an increase of malate available for lipid biosynthesis. Furthermore, transcriptional analysis showed that the expression levels of multiple key genes involved in the lipid biosynthesis were also increased in the knockout mutants. To the best of our knowledge, this is the first report that demonstrated the association between plasma membrane malate transporters and lipid accumulation in M. circinelloides.
    Matched MeSH terms: Malates*
  2. Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T
    Bioresour Technol, 2017 Nov;244(Pt 1):941-948.
    PMID: 28847084 DOI: 10.1016/j.biortech.2017.08.043
    This work aimed to develop an efficient microwave-hydrothermal (MH) extraction of malic acid from abundant natural cactus as hydrogen bond donor (HBD) whereby the concentration was optimized using response surface methodology. The ideal process conditions were found to be at a solvent-to-feed ratio of 0.008, 120°C and 20min with 1.0g of oxidant, H2O2. Next generation environment-friendly solvents, low transition temperature mixtures (LTTMs) were synthesized from cactus malic acid with choline chloride (ChCl) and monosodium glutamate (MSG) as hydrogen bond acceptors (HBAs). The hydrogen-bonding interactions between the starting materials were determined. The efficiency of the LTTMs in removing lignin from oil palm biomass residues, empty fruit bunch (EFB) was also evaluated. The removal of amorphous hemicellulose and lignin after the pretreatment process resulted in an enhanced digestibility and thermal degradability of biomass.
    Matched MeSH terms: Malates*
  3. Yiin CL, Ho S, Yusup S, Quitain AT, Chan YH, Loy ACM, et al.
    Bioresour Technol, 2019 Oct;290:121797.
    PMID: 31327691 DOI: 10.1016/j.biortech.2019.121797
    The aim of this work was to recover the cellulose fibers from EFB using low-transition-temperature-mixtures (LTTMs) as a green delignification approach. The hydrogen bonding of LTTMs observed in 1H NMR tends to disrupt the three-dimensional structure of lignin and further remove the lignin from EFB. Delignification process of EFB strands and EFB powder were performed using standard l-malic acid and cactus malic acid-LTTMs. The recovered cactus malic acid-LTTMs showed higher glucose concentration of 8.07 mg/mL than the recovered l-malic acid LTTMs (4.15 mg/mL). This implies that cactus malic acid-LTTMs had higher delignification efficiency which led to higher amount of cellulose hydrolyzed into glucose. The cactus malic acid-LTTMs-delignified EFB was the most feasible fibers for making paper due to its lowest kappa number of 69.84. The LTTMs-delignified EFB has great potential to be used for making specialty papers in pulp and paper industry.
    Matched MeSH terms: Malates
  4. A. Tang, S.K. Wong, O.H. Ahmed, N.M. Majid
    ASM Science Journal, 2013;7(1):23-26.
    MyJurnal
    Widespread deforestation has resulted in soil degradation that is often linked to environmental and ecological changes. Rehabilitation of degraded forest is essential to prevent further degradation of the soil. Abundance of soil microbiota could serve as an essential biological indicator of soil health for rehabilitation success. An investigation was conducted to study the relationship between cellulolytic, nitrogen-fixing and phosphate-solubilizing microbial counts and age of rehabilitated forest. A random sampling design was used to obtain four replicates of five composite soil of 0–10 cm depth soil samples of 4, 9, 14 and 19-year-old rehabilitated forest. Three selective media: Congo red cellulose, nitrogen-free malate and calcium phosphate media were used for the enumerations of cellulolytic, nitrogen-fixing and phosphate-solubilizing microbes, respectively. Cellulolytic and phosphate-solubilizing microbes were counted based on the formation of clearing zones, while nitrogen-fixing microbes were based on the formation of blue halo on the respective media. There was positive linear relationship between age of the rehabilitated forest and microbial count. These findings revealed that the potentials of cellulolytic, nitrogen-fixing and phosphate-solubilizing microbial populations could be used as biological indicators of forest soil rehabilitation.
    Matched MeSH terms: Malates
  5. Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI
    ScientificWorldJournal, 2013;2013:272409.
    PMID: 24288473 DOI: 10.1155/2013/272409
    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg(-1)), plant P uptake (0.78 P pot(-1)), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g(-1)) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.
    Matched MeSH terms: Malates/pharmacology*
  6. Omar AF, Atan H, Matjafri MZ
    Molecules, 2012 Jun 15;17(6):7440-50.
    PMID: 22706373 DOI: 10.3390/molecules17067440
    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.
    Matched MeSH terms: Malates/chemistry
  7. Johanson RA, Reeves HC
    Biochim. Biophys. Acta, 1977 Jul 08;483(1):24-34.
    PMID: 18195
    Oxalacetate and glyoxylate are each weak inhibitors of NADP+-specific isocitrate dehydrogenase (threo-DS-isocitrate:NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42)9 Together, however, they act in a concerted manner and strongly inhibit the enzyme. The rates of formation and dissociation of the enzyme inhibitor complex, and the rate of formation and the stability of the aldol condensation product of oxalacetate and glyoxylate, oxalomalate, were examined. The data obtained do not support the often suggested possibility that oxalomalate, per se, formed non-enzymatically in isocitrate dehydrogenase assay mixtures containing oxalacetate and glyoxylate, is responsible for the observed inhibition of the enzyme. Rather, the data presented in this communication suggest that oxalacetate binds to the enzyme first, and that the subsequent binding of glyoxylate leads to the formation of a catalytically inactive enzyme-inhibitor complex.
    Matched MeSH terms: Malates/metabolism*
  8. Anjum H, Johari K, Appusamy A, Gnanasundaram N, Thanabalan M
    J Hazard Mater, 2019 11 05;379:120673.
    PMID: 31254791 DOI: 10.1016/j.jhazmat.2019.05.066
    In this study, the impact of different oxidizing agents on the structural integrity of activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) was studied for the removal of BTX from aqueous solution. Seven different combinations of green oxidizing agents (mild organic acids) in conjugation with NaOCl (basic oxidizing agent) were used. The modified adsorbents were analyzed by Brunauer, Emmett, and Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR), Boehm titration, Raman spectroscopy, thermal gravimetric analysis (TGA), x-ray diffraction (XRD), zeta potential, and variable pressure field emission scanning electron microscope (VPFESEM). The results suggested that the carbonaceous sorbents modified with combination of citric acid tartaric acid, malic acid and salicylic acid (CTMS-I) showed increased surface area (O-AC: 871.67 m2/g, O-MWCNTs: 336.37 m2/g) and total pore volume (O-AC: 0.59 cm3/g, O-MWCNTs: 0.04 cm3/g), with the significantly improved thermal stability. Preliminary batch adsorption experiments conducted using the present prepared O-AC and O-MWCNTs, showed an improved performance towards the adsorption of BTX, compared with other available reported adsorbents in the literature.
    Matched MeSH terms: Malates
  9. Teh HF, Neoh BK, Hong MP, Low JY, Ng TL, Ithnin N, et al.
    PLoS One, 2013;8(4):e61344.
    PMID: 23593468 DOI: 10.1371/journal.pone.0061344
    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.
    Matched MeSH terms: Malates/metabolism
  10. Hashim NAA, Ab-Rahim S, Suddin LS, Saman MSA, Mazlan M
    Molecular and clinical oncology, 2019 Jul;11(1):3-14.
    PMID: 31289671 DOI: 10.3892/mco.2019.1853
    Accurate diagnosis of colorectal cancer (CRC) relies on the use of invasive tools such as colonoscopy and sigmoidoscopy. Non-invasive tools are less sensitive in detecting the disease, particularly in the early stage. A number of researchers have used metabolomics analyses on serum/plasma samples of patients with CRC compared with normal healthy individuals in an effort to identify biomarkers for CRC. The aim of the present review is to compare reported serum metabolomics profiles of CRC and to identify common metabolites affected among these studies. A literature search was performed to include any experimental studies on global metabolomics profile of CRC using serum/plasma samples published up to March 2018. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was used to assess the quality of the studies reviewed. In total, nine studies were included. The studies used various analytical platforms and were performed on different populations. A pathway enrichment analysis was performed using the data from all the studies under review. The most affected pathways identified were protein biosynthesis, urea cycle, ammonia recycling, alanine metabolism, glutathione metabolism and citric acid cycle. The metabolomics analysis revealed levels of metabolites of glycolysis, tricarboxylic acid cycle, anaerobic respiration, protein, lipid and glutathione metabolism were significantly different between cancer and control samples. Although the majority of differentiating metabolites identified were different in the different studies, there were several metabolites that were common. These metabolites include pyruvic acid, glucose, lactic acid, malic acid, fumaric acid, 3-hydroxybutyric acid, tryptophan, phenylalanine, tyrosine, creatinine and ornithine. The consistent dysregulation of these metabolites among the different studies suggest the possibility of common diagnostic biomarkers for CRC.
    Matched MeSH terms: Malates
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links