Affiliations 

  • 1 Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • 2 Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; University Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address: adah@um.edu.my
Ultrason Sonochem, 2021 Nov;79:105793.
PMID: 34673338 DOI: 10.1016/j.ultsonch.2021.105793

Abstract

Pandan (Pandanus amaryllifolius) is commonly used as a food ingredient in Southeast Asia due to its delicious flavor, appetizing aroma and bright green colour. Pandan plant is uniquely found only in certain parts of the world. Despite its increasing popularity worldwide, its export market is limited by practical issues. One of the main problems for exporting Pandan to global market is its stability during transport. Due to the volatility of its active constituent, the functional properties of Pandan are lost during storage and shipment. In this study, we explored the ability of ultrasound processing technology to encapsulate the aromatic Pandan extract using lysozyme or chitosan as a shell material. 20 kHz ultrasonicator was used to encapsulate the pandan extract at 150 W of applied power. Two parameters, the ultrasonic probe tip and the core-to-shell ratio were varied to control the properties of the encapsulates. The diameters of the probe tip used were 0.3 and 1.0 cm. The core-to-shell volume ratios used were 1:160 and 1:40. The size distribution and the stability of the synthesized microspheres were characterized to understand and explore the possible parameters variation impact. Both size and size distribution of the microspheres were found to be influenced by the parameters varied to certain extent. The results showed that the mean size of the microspheres was generally smallest when using 1 cm probe tip with lower core-to-shell volume ratio but largest when using the 3 mm tip with higher core-to-shell volume ratio. This indicates that the sonication parameters could be fine-tuned to achieve the encapsulation of Pandan extract for storage and export. The pandan-encapsulated microspheres were also found to be stable during storage at least for one month.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.