Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Wan-Ibrahim WI, Singh VA, Hashim OH, Abdul-Rahman PS
    Mol. Med., 2016 Mar;21(1):861-872.
    PMID: 26581086 DOI: 10.2119/molmed.2015.00183
    Diagnosis of bone tumor currently relies on imaging and biopsy, and hence, the need to find less invasive ways for its accurate detection. More recently, numerous promising deoxyribonucleic acid (DNA) and protein biomarkers with significant prognostic, diagnostic and/or predictive abilities for various types of bone tumors have been identified from genomics and proteomics studies. This article reviewed the putative biomarkers for the more common types of bone tumors (that is, osteosarcoma, Ewing sarcoma, chondrosarcoma [malignant] and giant cell tumor [benign]) that were unveiled from the studies. The benefits and drawbacks of these biomarkers, as well as the technology platforms involved in the research, were also discussed. Challenges faced in the biomarker discovery studies and the problems in their translation from the bench to the clinical settings were also addressed.
  2. Wan-Ibrahim WI, Ashrafzadeh A, Singh VA, Hashim OH, Abdul-Rahman PS
    Electrophoresis, 2016 09;37(17-18):2328-37.
    PMID: 27062367 DOI: 10.1002/elps.201500522
    Sarcoma is a malignant tumor that originates from the bone or soft tissue. In this study, abundances of serum amyloid A (SAA) in patients with pleomorphic sarcoma (PS), chondrosarcoma (CS), and osteosarcoma (OS) were analyzed and compared with those from their respective age-matched healthy control subjects. Results obtained from our analysis by 2DE showed that the levels of SAA were markedly elevated in patients with PS and OS, which are highly metastatic, while in patients with CS, which is a less aggressive sarcoma, the increase appeared less pronounced. A similar trend of altered abundances was also observed when the levels of SAA in the subjects were estimated using Western blot, ELISA, and multiple-reaction monitoring analyses. Absolute quantification using multiple-reaction monitoring further demonstrated that the increased abundance of SAA in patients with PS, OS, and CS was mainly attributed to isoform SAA1. In view of the different degrees of tumor malignancy in PS, OS, and CS, our data suggest their apparent correlation with the levels of SAA in the patients.
  3. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
  4. Kwan SH, Abdul-Rahman PS
    Plant Foods Hum Nutr, 2021 Sep;76(3):257-269.
    PMID: 34292494 DOI: 10.1007/s11130-021-00901-y
    Human milk is recommended by the World Health Organization (WHO) for the general well-being of infants. However, many mothers face an insufficient milk supply to breastfeed their children. Galactagogue, in particular, plant galactagogue, serves as a method to promote lactation. This in-depth review examines the evidence supporting different plants' galactagogic activity through clinical studies around the globe. A scoping review approach was adopted to establish the research questions, and define the findings, selection and analysis of the study. This scoping review highlights and compiles the clinical research performed globally involving plant galactagogue to better inform the medical practitioners, lactation consultants, nursing mothers, communities and relevant personnel on practicing, guidelines, policymaking and research. In general, a total of 1041 research publications were retrieved from different global bibliographic databases, of which only 13 articles were retained for analysis after applying the exclusion criteria. A total of 14 types of plants have undergone clinical studies in the past decade to verify their galactagogic activity. All but two showed a positive effect on promoting milk production. There were 42 articles categorised as excluded studies. The category includes review articles, surveys, case reports, introductory articles of regional plant galactagogue and preclinical studies, which involves animal testing and the studies exploring other issues related to plant galactagogue. The findings demonstrate that there is a significant research gap on the plant galactagogue using clinical studies. More clinical research is necessary to identify and verify the efficacy of various types of plant galactagogue for the benefit of humankind.
  5. Kwan SH, Wan-Ibrahim WI, Juvarajah T, Fung SY, Abdul-Rahman PS
    Electrophoresis, 2021 02;42(3):233-244.
    PMID: 33085102 DOI: 10.1002/elps.202000142
    Milk serves as the sole nutrition for newborns, as well as a medium for the transfer of immunological components from the mother to the baby. This study reveals different glycoprotein profiles obtained from human, bovine, and caprine milk and their potential roles in supporting infant growth. Proteins from these three milk samples are separated and analyzed using two-dimensional gel electrophoresis (2-DE). Glycosylated proteins from all samples are enriched by affinity chromatography using lectins from the seeds of Artocarpus integer before analysis using LC/MS-QTOF. The glycoproteome profiling demonstrates that glycosylated proteins are higher in caprine milk compared to other samples. Analysis using LC/MS-QTOF identified 42 O-glycosylated and 56 N-glycosylated proteins, respectively. Among those identified, human milk has 17 glycoproteins, which are both O- and N-glycosylated, whereas caprine and bovine have 10 and 1, respectively. Only glycoproteins from human milk have shown positive matching to important human biological pathways, such as vesicle-mediated transport, immune system and hemostasis pathways. Human milk remains unique for human babies with the presence of antibodies in the form of immunoglobulins that are lacking in ruminant milk proteomes.
  6. Juvarajah T, Wan-Ibrahim WI, Ashrafzadeh A, Othman S, Hashim OH, Fung SY, et al.
    Breastfeed Med, 2018 11;13(9):631-637.
    PMID: 30362820 DOI: 10.1089/bfm.2018.0057
    BACKGROUND: Bioactive proteins from milk fat globule membrane (MFGM) play extensive roles in cellular processes and defense mechanisms in infants. The aims of this study were to identify differences in protein compositions in human and caprine MFGM using proteomics and evaluate possible nutritional benefits of caprine milk toward an infant's growth, as an alternative when breastfeeding or human milk administration is not possible or inadequate.

    MATERIALS AND METHODS: Human and caprine MFGM proteins were isolated and analyzed, initially by polyacrylamide gel electrophoresis, and subsequently by quadrupole time-of-flight liquid chromatography-mass spectrometry. This was then followed by database search and gene ontology analysis. In general, this method selectively analyzed the abundantly expressed proteins in milk MFGM.

    RESULTS: Human MFGM contains relatively more abundant bioactive proteins compared with caprine. While a total of 128 abundant proteins were detected in the human MFGM, only 42 were found in that of the caprine. Seven of the bioactive proteins were apparently found to coexist in both human and caprine MFGM.

    RESULTS/DISCUSSION: Among the commonly detected MFGM proteins, lactotransferrin, beta-casein, lipoprotein lipase, fatty acid synthase, and butyrophilin subfamily 1 member A1 were highly expressed in human MFGM. On the other hand, alpha-S1-casein and EGF factor 8 protein, which are also nutritionally beneficial, were found in abundance in caprine MFGM. The large number of human MFGM abundant proteins that were generally lacking in caprine appeared to mainly support human metabolic and developmental processes.

    CONCLUSION: Our data demonstrated superiority of human MFGM by having more than one hundred nutritionally beneficial and abundantly expressed proteins, which are clearly lacking in caprine MFGM. The minor similarity in the abundantly expressed bioactive proteins in caprine MFGM, which was detected further, suggests that it is still nutritionally beneficial, and therefore should be included when caprine milk-based formula is used as an alternative.

  7. Ramdas P, Radhakrishnan AK, Abdu Sani AA, Abdul-Rahman PS
    Nutr Cancer, 2019;71(8):1263-1271.
    PMID: 31084432 DOI: 10.1080/01635581.2019.1607407
    Tocotrienols (T3), a family of vitamin E, are reported to possess potent anti-cancer effects but the molecular mechanisms behind these effects still remain unclear. The aim of this study was to investigate how T3 exert anti-cancer effects on MDA-MB-231 human breast cancer cells. The MDA-MB-231 cells were chosen for this study as they are triple-negative and highly metastatic cells, which form aggressive tumors in experimental models. The MDA-MB-231 cells were treated with varying concentrations (0-20 µg mL-1) of gamma (γ) or delta (δ) T3 and the secretome profiles of these cells treated with half maximal inhibitory concentration (IC50) of γT3 (5.8 µg mL-1) or δT3 (4.0 µg mL-1) were determined using label-free quantitative proteomic strategy. A total of 103, 174 and 141 proteins were identified with ProteinLynx Global Server (PLGS) score of more than 200 and above 25% sequence coverage in the untreated control and T3-treated cell culture supernatant respectively. A total of 18 proteins were dysregulated between untreated control and T3 (δT3 or γT3) treated conditions. The results showed that T3 treatment downregulated the exogenous Cathepsin D and Serpine1 proteins but upregulated Profilin-1 protein, which play a key role in breast cancer in the MDA-MB-231 cells. These findings strongly suggest that T3 may induce differential expression of secreted proteins involved in the cytoskeletal regulation of RHO GTPase signaling pathway.
  8. Fahim A, Himratul-Aznita WH, Abdul-Rahman PS
    Pak J Med Sci, 2020 2 18;36(2):271-275.
    PMID: 32063973 DOI: 10.12669/pjms.36.2.1457
    Objective: Chlorhexidine mouthrinses are considered a gold standard as an adjunct treatment of oral infections. However, owing to its toxicity, discoloration of tooth surface and the emerging prevalence of drug-resistant species, attention is being given to exploring natural alternatives to the drug.

    Methods: The experiment was carried out in Azra Naheed Center for Research and Development (ANCRD), Superior University, Lahore, Pakistan from September 2018 till May 2019. Biofilms and planktonic cells of C. albicans alone and in combination with streptococci were subjected to chlorhexidine, allium sativum and bakuchiol individually and to allium-bakuchiol combination. Kirby-Bauer test, antifungal susceptibility testing, CFU count and drug synergy assessment was done on planktonic cells. Dynamic biofilms were formed to mimic conditions similar to oral cavity and CFU was determined.

    Results: MIC of all three agents was higher against mixed species when compared to single species planktonic cells and biofilm. Allium sativum and bakuchiol demonstrated synergistic effects. The decrease in CFU count and minimum biofilm reduction to salivary pellicle caused by allium sativum-bakuchiol was comparable to that of chlorhexidine.

    Conclusion: Thus, allium sativum-bakuchiol combination demonstrated antimicrobial effects similar to chlorhexidine against planktonic cells and dynamic biofilm. It could serve as a possible natural, economical alternative to chlorhexidine mouthrinses usually recommended in dental clinics. However, in vivo studies are required to determine the correct dosage of these agents.

  9. Tan XT, Amran FB, Thayan R, Ahmad N, Jaafar R, Haron R, et al.
    Electrophoresis, 2017 09;38(17):2141-2149.
    PMID: 28524240 DOI: 10.1002/elps.201600471
    Leptospirosis is an emerging zoonotic infectious disease in Malaysia. The symptoms of leptospirosis vary from mild nonspecific flu-like illness to a severe condition which is usually associated with serious complication and fatality. To study the protein expression profile of mild and severe leptospirosis, 15 paired sera were collected from the patients who were mildly infected and following that progressed to severe stage. The proteome profiles of mild and severe cases were studied using 2DE analysis in combination with LC-MS/MS. The expression of proteins that were significantly different and had a fold difference of at least 2 had been identified and then validated using Western blot. Our study demonstrated apolipoprotein A-I (APOA-I), serum amyloid A (SAA), transferrin (TF), haptoglobin (HP) and transthyretin (TTR) have significantly different expression between mild and severe leptospirosis. The Ingenuity Pathway Analysis software suggested the expression of these five proteins were modulated by acute phase response signaling pathway. Besides that, a functional network of lipid metabolism, molecular transport and small molecule biochemistry that interconnects these five proteins with interactomes also had been predicted by this software. In conclusion, this finding supports the potential of these five proteins to be the biomarkers for mild and severe human leptospirosis.
  10. Wong KC, Jayapalan JJ, Subramanian P, Ismail MN, Abdul-Rahman PS
    PMID: 36915983 DOI: 10.1002/arch.22008
    Mutation in the Drosophila melanogaster lethal giant larvae (lgl), a tumor suppressor gene with a well-established role in cellular polarity, is known to results in massive cellular proliferation and neoplastic outgrowths. Although the tumorigenic properties of lgl mutant have been previously studied, however, little is known about its consequences on the proteome. In this study, mass spectrometry-based label-free quantitative proteomics was employed to investigate the changes in the head and intestinal tissues proteins of Drosophila melanogaster, due to lgl mutation and following treatment with melatonin. Additionally, to uncover the time-influenced variations in the proteome during tumorigenesis and melatonin treatment, the rhythmic expression of proteins was also investigated at 6-h intervals within 24-h clock. Together, the present study has identified 434 proteins of altered expressions (p 
  11. Abrahim NN, Aminudin N, Abdul-Rahman PS
    Food Technol Biotechnol, 2023 Jun;61(2):191-201.
    PMID: 37457905 DOI: 10.17113/ftb.61.02.23.7802
    RESEARCH BACKGROUND: Ficus deltoidea (mistletoe fig) is a shrub well known among locals in Malaysia primarily for its treatment of toothaches, colds and wounds. The aim of this study is to determine the potential of leaves, sourced from three different varieties of F. deltoidea, to exhibit antioxidant activity, a reduction of lipid concentration, and protein expression in steatosis-induced liver cell lines.

    EXPERIMENTAL APPROACH: The leaves of three F. deltoidea varieties, namely Ficus deltoidea var. angustifolia, Ficus deltoidea var. trengganuensis and Ficus deltoidea var. kunstleri, were subjected to water extraction. The resulting crude extracts were fractionated using water and ethyl acetate. Palmitic acid was used to induce lipid accumulation (steatosis) in human liver (WRL68) cells, before all the samples were tested for their lipid-reducing activity. Several proteomic approaches were incorporated. The changes in protein expression were determined using 2-dimensional gel electrophoresis separation, whereas identification of our protein spots of interest was carried out via matrix-assisted laser desorption/ionization time-of-flight.

    RESULTS AND CONCLUSIONS: Ficus deltoidea var. kunstleri alone demonstrated the ability to reduce lipids at the highest tested concentration (200 µg/mL) and was, therefore, used for subsequent experiments. Treatment with Ficus deltoidea var. kunstleri was found to restore redox status by increasing superoxide dismutase and glutathione peroxidase amounts and decreasing malondialdehyde formation. Six proteins were successfully identified; these were heat shock protein beta-1 (HSPB1), proteasome subunit alpha type 1 (PSMA1), glutathione S-transferase omega 1 (GSTO1), peroxiredoxin-1 (PRDX1), histone H2B (HIST1H2BD) and ubiquitin c-terminal hydrolase L3 (UCHL3). Through bioinformatics analysis, it was found that these proteins were significantly involved in specific pathways such as oxidative stress (PRDX1 and GSTO1), protein homeostasis (HSPB1) and degradation (UCHL3 and PSMA1).

    NOVELTY AND SCIENTIFIC CONTRIBUTION: F. deltoidea pretreatment was shown to reduce lipid accumulation, thus improving the redox status and protein homeostasis. This suggests the role of F. deltoidea as a preventive mechanism in non-alcohol fatty liver disease.

  12. Mutalip SS, Yunos NM, Abdul-Rahman PS, Jauri MH, Osman A, Adenan MI
    Anticancer Res, 2014 Aug;34(8):4141-51.
    PMID: 25075041
    AIM: Abnormalities in apoptotic signalling pathways often occur in cancer cells and limit the successful chemotherapy outcomes in cancers. Therefore, there is an urgent need to discover new anticancer agents with novel mechanisms of action to overcome the resistance effect in chemotherapy.

    MATERIALS AND METHODS: In the present study, the anticancer effects and the mechanisms of action of 17βH-neriifolin (cardiac glycoside) were evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and a proteomic approach in treated and non-treated SKOV-3 ovarian cancer cells.

    RESULTS: 17βH-neriifolin was found to be active with IC50 values of 0.01 ± 0.001 in SKOV-3 ovarian cancer cell line, as evaluated by the sulforhodamine B (SRB) assay. RESULTS from TUNEL assay indicated that 17βH-neriifolin caused apoptosis in SKOV-3 cells in a dose-dependent manner. Based on differential analysis of treated and non-treated SKOV-3 two-dimensional electrophoresis (2-DE) profiles, four proteins, namely vimentin (VIM), pyruvate kinase, muscle (PKM), heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) and transgelin (TAGLN1) were identified to be involved in apoptosis. Other proteins including piggybac transposable element derived 5 (PGBD5), DENN/MADD domain containing 2D (DENND2D) and formin-like 1(FMNL) have also been identified to be associated in SKOV-3 cell death induced by 17βH-neriifolin.

    CONCLUSION: These findings may provide new insights on the potential of 17βH-neriifolin's mechanism of action in killing ovarian cancer cells.

  13. Fahim A, Himratul-Aznita WH, Abdul-Rahman PS, Alam MK
    PeerJ, 2022;9:e12251.
    PMID: 35036111 DOI: 10.7717/peerj.12251
    Background: Polymicrobial biofilms are notorious for causing intraoral tissue destruction. Streptococcus sanguinis and Streptococcus mitis, commensals of oral cavities, have been found co-existing with C. albicans in resistant oral infections. There is an urgent need to find alternative treatment options. This study aims to assess the efficacy of garlic (G) and bakuchiol (Bk) combination against candida virulent genes and their subsequently secreted proteins.

    Methods: In vitro single species biofilms of C. albicans, and mixed species biofilms formed in combination with streptococci were exposed to bakuchiol and garlic extract (Bk+G). Gene expression of agglutinin-like sequence (ALS1), (ALS3), adhesin-like wall proteins (HWP1) and aspartyl proteinases (SAP5) were determined using qPCR and their subsequent proteins were assessed through Western blotting.

    Results: Virulent genes were significantly downregulated in single species biofilms when they were treated with Bk+G combination. However, Bk+G did not have significant effect on ALS1 and HWP1 gene in polymicrobial biofilms. ALS3 and SAP5 were significantly downregulated in Bk+G treated polymicrobial biofilm. Similar results were portrayed in Western blotting.

    Conclusion: Bk+G combination exhibited antimicrobial effects against single and mixed species biofilms. The findings might provide insights for treating resistant candida infections. This combination could potentially serve as an herbal alternative to traditional antifungals following further research.

  14. Abrahim NN, Abdul-Rahman PS, Aminudin N
    PeerJ, 2018;6:e5694.
    PMID: 30324012 DOI: 10.7717/peerj.5694
    Leaves from three varieties of Ficus deltoidea, colloquially termed small- (FDS), medium- (FDM), and big-type leaf (FDB), were subjected to water extraction. The crude extracts were fractionated using water (WF) and ethyl acetate (EAF). The phenolic and flavonoid content, antioxidant activity, and cytotoxicity of the fractions were investigated. The EAF had the highest phenolic and flavonoid content compared to the other FDS fractions. Conversely, the FDM crude extract had the highest phenolic and flavonoid content compared to the other FDM samples. Antioxidant activity was highest in the FDB crude extract. Ultra-high-performance liquid chromatography showed that two compounds, vitexin and coumaric acid, were present in the FDB crude extract. Additionally, the F. deltoidea leaves caused no signs of toxicity in a normal liver cell line. Our findings show that F. deltoidea varieties have excellent antioxidant activity with no cytotoxic effects on normal liver cells.
  15. Gabrielsen M, Abdul-Rahman PS, Othman S, Hashim OH, Cogdell RJ
    Acta Crystallogr F Struct Biol Commun, 2014 Jun;70(Pt 6):709-16.
    PMID: 24915077 DOI: 10.1107/S2053230X14008966
    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding.
  16. Subramanian P, Kaliyamoorthy K, Jayapalan JJ, Abdul-Rahman PS, Haji Hashim O
    J Insect Sci, 2017 Jan 01;17(2).
    PMID: 28931163 DOI: 10.1093/jisesa/iex040
    Numerous biological processes are governed by the biological clock. Studies using Drosophila melanogaster (L.) are valuable that could be of importance for their effective applications on rodent studies. In this study, the beneficial role of quercetin (a flavonoid) on H2O2 induced stress in D. melanogaster was investigated. D. melanogaster flies were divided into four groups (group I - control, group II - H2O2 (acute exposure), group III - quercetin, and group IV - quercetin + H2O2 treated). Negative geotaxis assay, oxidative stress indicators (protein carbonyls, thiobarbituric reactive substances [TBARS]), and antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione-S-transferase [GST], glutathione peroxidase, and reduced glutathione [GSH]) were measured at 4 h intervals over 24 h and temporal expression of heat shock protein-70 (Hsp70), Upd1 (homolog of IL-6 in Drosophila), and nitric oxide synthase (Nos) was analyzed by Western blotting. Groups II and IV showed altered biochemical rhythms (compared with controls). Decreased mesor values of negative geotaxis, SOD, CAT, GST, and GSH were noticed in H2O2, increased mesor of oxidative stress indicators (TBARS and protein carbonyl content) and a reversibility of the rhythmic characteristics were conspicuous after quercetin treatment. The expression levels of Hsp70, Upd1, and Nos were noticeably maximum at 04:00. Significant elevation of expression by H2O2 was nearly normalized by quercetin treatment. The possible mechanism by which quercetin modulates oxidant-antioxidant imbalance under oxidative stress could be ascribed to the modulation of the rhythmic properties. Our results will be helpful to understand the molecular interlink between circadian rhythm and oxidative stress mechanism.
  17. Mohamed E, Jayapalan JJ, Abdul-Rahman PS, Omar SZ, Hashim OH
    Biomark Res, 2013;1(1):19.
    PMID: 24252421 DOI: 10.1186/2050-7771-1-19
    Accumulated data from previous studies appear to suggest a link between the overexpression of a 35 kDa fragment of serum inter-alpha-trypsin inhibitor H4 (ITIH4) with cancers that are associated with up-regulated levels of oestrogens. The truncated fragment was postulated to be a product of oestrogen-induced action of kallikrein on native ITIH4. The present lectin-based proteomic analyses were performed to assess the specificity of the 35 kDa fragment of ITIH4 as a potential cancer biomarker and determine whether it was also overexpressed in the sera of cancer-negative pregnant women who are known to have high levels of plasma oestrogens.
  18. Lee CS, Muthusamy A, Abdul-Rahman PS, Bhavanandan VP, Hashim OH
    Analyst, 2013 Jun 21;138(12):3522-9.
    PMID: 23665615 DOI: 10.1039/c3an36258b
    Mucins and mucin-type glycoproteins, collectively referred to as mucin-type O-glycans, are implicated in many important biological functions and pathological conditions, including malignancy. Presently, there is no reliable method to measure the total mucin-type O-glycans of a sample, which may contain one or more of these macromolecules of unknown structures. We report the development of an improved microassay that is based on the binding of lectins to the unique and constant GalNAc-Ser/Thr structural feature of mucin-type O-glycans. Since the sugar-amino acid linkage in the mucin-type O-glycans is invariably cryptic, we first chemically removed the heterogeneous peripheral and core saccharides of model glycoconjugates before examining for their interactions using an enzyme-linked lectin assay (ELLA). Desialylation of the model glycoconjugates led to maximal binding of the lectins but additional treatments such as Smith degradation did not result in increased binding. Of the lectins tested for their ability to probe the desialylated O-glycans, jacalin showed the highest sensitivity followed by champedak galactose binding (CGB) lectin and Vicia villosa agglutinin. Further improvement in the sensitivity of ELLA was achieved by using microtiter plates that were pre-coated with the CGB lectin, which increased the specificity of the assay to mucin-type O-glycans. Finally, the applicability of the developed sandwich ELLA to crude samples was demonstrated by estimating trace quantities of the mucin-type O-glycans in the human serum.
  19. Golbabapour S, Pang WW, George J, Pasupati T, Abdul-Rahman PS, Hashim OH
    Int J Mol Sci, 2011;12(2):1030-40.
    PMID: 21541040 DOI: 10.3390/ijms12021030
    The present study was undertaken to develop a rat model for monitoring the early development of breast cancer. Twelve female rats were divided into two groups of six rats that were either treated with N-methyl-N-nitrosourea to induce breast cancer or with bacterial lipopolysaccharide to induce inflammation. Serum samples taken from the rats prior to the treatment were used as controls. By the 14th week, presence of the tumor was detectable by contrast enhanced magnetic resonance imaging and confirmed by histopathology. When the serum proteins of the rats were examined by 2-dimensional electrophoresis (2-DE), no difference could be detected in the profiles of all proteins before and 18 weeks after administration of N-methyl-N-nitrosourea. However, higher expression of alpha-1B glycoprotein was detectable by 2-DE in serum samples of rats at the 18th week post-treatment with lipopolysaccharide.
  20. Seriramalu R, Pang WW, Jayapalan JJ, Mohamed E, Abdul-Rahman PS, Bustam AZ, et al.
    Electrophoresis, 2010 Jul;31(14):2388-95.
    PMID: 20575108 DOI: 10.1002/elps.201000164
    The use of lectin affinity chromatography prior to 2-DE separation forms an alternative method to unmask the expression of targeted glycoproteins of lower abundance in serum samples. Reduced expression of alpha-2 macroglobulin (AMG) and complement factor B (CFB) was detected in sera of patients with nasopharyngeal carcinoma (NPC) when pooled serum samples of the patients and those of healthy individuals were subjected to affinity isolation using immobilized champedak mannose-binding lectin and analyzed by 2-DE and densitometry. The AMG and CFB spots were not detected in the 2-DE protein profiles when the same pooled serum samples were subjected to albumin and IgG depletion and neither were they detected when the depleted samples were analyzed by western blotting and lectin detection. Together with other acute-phase response proteins that were previously reported to be altered in expression in NPC patients, AMG and CFB may serve as useful complementary biomarkers for NPC.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links