Displaying all 5 publications

Abstract:
Sort:
  1. Sim SK, Theophilus SC, Noor Azman AR
    MyJurnal
    Cranium dysraphism occur less commonly than spinal dysraphism. Overall, occipital encephalocoeles are more frequent than anterior encephalocoes. A large occipital encephalocoele possess difficulty in surgical intervention, not only the sac contains large amount of herniated brain tissue, but the appropriate positioning for successful intubation as well as the higher rate of surgical complications such as cerebrospinal fluid leakage and skin necrosis. In this case report, surgical management of large occipital encephalocoele is discussed. The use of antibiotics in ruptured encephalocoele is recommended.
  2. Tze Lin K, Mahat NA, Azman AR, Wahab RA, Oyewusi HA, Abdul Hamid AA
    J Biomol Struct Dyn, 2023 Mar 07.
    PMID: 36880661 DOI: 10.1080/07391102.2023.2186709
    Being commonly found at crime scenes, fingerprints are crucial for human identification, attributable to their uniqueness, persistence and systematic classification of ridge patterns. In addition to latent fingerprints being invisible to the naked eye, the escalating trends of disposing forensic evidence bearing such prints in watery bodies would further complicate criminal investigations. Taking into account the toxicity of small particle reagent (SPR) commonly used in visualising latent fingerprints on wet and non-porous objects, a greener alternative using the nanobio-based reagent (NBR) has been suggested. However, NBR only applies to white and/or relatively light-coloured objects. Thus, conjugation of sodium fluorescein dye with NBR (f-NBR) may be beneficial for increasing the contrast of fingerprint on multi-colored objects. Hence, this study was aimed at investigating the possibility of such conjugation (i.e., f-NBR) as well as proposing suitable interactions between the f-NBR and lipid constituents of fingerprints (tetra-, hexa- and octadecanoic acids) via molecular docking and molecular dynamics simulations. The binding energies between CRL with its ligands were observed at -8.1, -5.0, -4.9 and -3.6 kcal/mole for sodium fluorescein, tetra-, hexa- and octadecanoic acids, respectively. Besides, the formations of hydrogen bonds observed in all complexes (ranged between 2.6 and 3.4 Å), further supported by the stabilized root mean square deviation (RMSDs) plots in MD simulations. In short, the conjugation of f-NBR was computationally feasible, and thereby merits further investigations in the laboratory.Communicated by Ramaswamy H. Sarma.
  3. Azman AR, Mahat NA, Abdul Wahab R, Abdul Razak FI, Hamzah HH
    Int J Mol Sci, 2018 May 25;19(6).
    PMID: 29799469 DOI: 10.3390/ijms19061576
    Waterways are popular locations for the disposition of criminal evidence because the recovery of latent fingerprints from such evidence is difficult. Currently, small particle reagent is a method often used to visualize latent fingerprints containing carcinogenic and hazardous compounds. This study proposes an eco-friendly, safranin-tinted Candida rugosa lipase (triacylglycerol ester hydrolysis EC 3.1.1.3) with functionalized carbon nanotubes (CRL-MWCNTS/GA/SAF) as an alternative reagent to the small particle reagent. The CRL-MWCNTS/GA/SAF reagent was compared with the small particle reagent to visualize groomed, full fingerprints deposited on stainless steel knives which were immersed in a natural outdoor pond for 30 days. The quality of visualized fingerprints using the new reagent was similar (modified-Centre for Applied Science and Technology grade: 4; p > 0.05) to small particle reagent, even after 15 days of immersion. Despite the slight decrease in quality of visualized fingerprints using the CRL-MWCNTS/GA/SAF on the last three immersion periods, the fingerprints remained forensically identifiable (modified-Centre for Applied Science and Technology grade: 3). The possible chemical interactions that enabled successful visualization is also discussed. Thus, this novel reagent may provide a relatively greener alternative for the visualization of latent fingerprints on immersed non-porous objects.
  4. Azman AR, Mahat NA, Abdul Wahab R, Ahmad WA, Ismail D
    Sci Rep, 2022 Aug 30;12(1):14780.
    PMID: 36042359 DOI: 10.1038/s41598-022-18929-8
    The discovery of forensic evidence (e.g. weapons) during forensic underwater investigations has seen an increasing trend. To date, small particle reagent (SPR) has been one of the routinely used methods for visualising fingerprints on wet, non-porous substrates. However, the long term use of SPR is detrimental to humans and environment due to the use of toxic chemicals. Although previously we have successfully developed and optimised a greener nanobio-based reagent (NBR), its suitable practical use in a more realistic scene (e.g. outdoor pond) was not evaluated. Therefore, this present research is aimed at (1) investigating the performance of NBR against the benchmark SPR in visualising fingerprints immersed in a natural outdoor pond and (2) evaluating the greenness of NBR against the analytical Eco-Scale. Results showed that the performance of the optimised NBR was mostly comparable (University of Canberra (UC) comparative scale: 0) with SPR at visualising fingerprints on three different non-porous substrates immersed in a natural outdoor pond. Observably, the NBR had higher preference towards aged fingerprints (up to 4 weeks of immersion). In addition, its greenness assessment revealed 76 points, indicating 'excellent green analysis'. The findings gathered here further supported the practical use of the NBR in forensic investigations.
  5. Azman AR, Mahat NA, Wahab RA, Ahmad WA, Puspanadan JK, Huri MAM, et al.
    Biotechnol Lett, 2021 Apr;43(4):881-898.
    PMID: 33389272 DOI: 10.1007/s10529-020-03052-3
    OBJECTIVE: Optimisation of the green novel nanobio-based reagent (NBR) for rapid visualisation of groomed fingerprints on wet non-porous substrates using response surface methodology and assessment of its stability and sensitivity were attempted for forensic applications.

    RESULTS: Scanning electron microscopy images demonstrated successful attachments of NBR onto the constituents of fingerprints on the substrates. The highest average quality of visualised fingerprints was attained at the optimum condition (100 mg of CRL; 75 mg of acid-functionalised multi-walled carbon nanotubes; 5 h of immobilisation). The NBR produced comparable average quality of fingerprints with the commercially available small particle reagent, even after 4 weeks of storage (without any preservatives) in both chilled and sultry conditions. The NBR was sensitive enough to visualise the increasingly weaker fingerprints, particularly on glass slides.

    CONCLUSION: The optimised novel NBR could be the relatively greener option for visualising latent fingerprints on wet, non-porous substrates for forensic applications.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links