Every day, more and more binding materials are being used in the construction industry all over the world. However, Portland cement (PC) is used as a binding material, and its production discharges a high amount of undesirable greenhouse gases into the environment. This research work is done to reduce the amount of greenhouse gases discharged during PC manufacturing and to reduce the cost and energy incurred in the cement manufacturing process by making effective consumption of industrial/agricultural wastes in the construction sector. Therefore, wheat straw ash (WSA) as an agricultural waste is utilized as cement replacement material, while used engine oil as an industrial waste is utilized as an air-entraining admixture in concrete. This study's main goal was to examine the cumulative impact of both waste materials on fresh (slump test) and hardened concrete (compressive strength, split tensile strength, water absorption, and dry density). The cement was replaced by up to 15% and used engine oil incorporated up to 0.75% by weight of cement. Moreover, the cubical samples were cast for determining the compressive strength, dry density, and water absorption, while the cylindrical specimen was cast for evaluating the splitting tensile strength of concrete. The results confirmed that compressive and tensile strengths augmented by 19.40% and 16.67%, at 10% cement replacement by wheat straw ash at 90 days, respectively. Besides, the workability, water absorption, dry density, and embodied carbon were decreased as the quantity of WSA increased with the mass of PC, and all of these properties are increased with the incorporation of used engine oil in concrete after 28 days, respectively.
In the last decade, there has been an increase in research on ecologically benign, cost-effective, and socially useful cement alternative materials for concrete. Alternatives involve industrial and agriculture waste, the potential advantages of which may be recognized by recycling, repurposing, and recreating techniques. Important energy reserves and a decrease in Portland cement (PC) consumption may be attained by using these wastes as supplementary and substitute ingredients, contributing to a reduction in carbon dioxide (CO2) production. Consequently, the incorporation of marble dust powder (MDP) and calcined clay (CC) as supplementary cementitious material (SCM) in high strength concrete may lower the environmental effect and reduce the amount of PC in mixes. This study is conducted on concrete containing 0%, 5%, 10%, 15%, and 20% of MDP and CC as cementitious materials alone and in combination. The main objectives of this investigations are to examine the effect of MDP and CC as cementitious materials on the flowability and mechanical characteristics of high strength concrete. In order to examine the ecological effect of CC and MDP, the eco-strength efficiency and embodied carbon were considered. In this context, there are so many trial mixes were performed on cubical specimens for achieving targeted compressive strength about 60 MPa after 28 days. After getting it, a total of 273 concrete specimens (cubes, cylinders, and prisms) were used to test the compressive, splitting tensile, and flexural strength of high strength concrete correspondingly. Moreover, when the amount of MDP and CC as SCM in the mixture grows, the workability of green concrete decreases. In addition, the compressive strength, flexural strength, and splitting tensile strength are increased by 6.38 MPa, 67.66 MPa, and 4.88 MPa, respectively, at 10% SCM (5% MDP and 5% CC) over a period of 28 days. In addition, using ANOVA, response prediction models were generated and confirmed at a 95% level of significance. The R2 values of the models varied from 96 to 99%. Furthermore, increasing the amount of CC and MDP as SCM in concrete also reduces the amount of carbon embedded in the material. It is recommended that the utilization of 10% SCM (5% MDP and 5% CC) in high strength concrete is providing optimum outcomes for construction industry in the field of Civil Engineering.
Polyurea coatings are well recognized for their remarkable protective properties, making them highly appropriate for practical use in the field of concrete building. The use of polyurea coatings in the concrete building business is currently constrained, despite its prevalent application in industrialized nations. The limited use may be ascribed to ambiguities about the determinants of effective implementation in this particular setting, as well as the dearth of extensive study in the realm of new building materials. The primary objective of this research is to assess and conceptualize the key determinants linked to the use of polyurea coatings in concrete building endeavors. Utilizing a quantitative research approach, a comprehensive literature analysis was conducted to identify a total of 21 probable success variables. The reliability of the questionnaire was established by the administration of a pilot survey, and afterwards, an exploratory factor analysis (EFA) was performed to enhance the clarity and precision of the underlying components. The researchers used structural modeling (SEM) approaches to develop a robust model using the primary data obtained from the questionnaire survey. The EFA revealed the presence of five unique constructs that have an impact on the effectiveness of polyurea coatings in concrete building projects. These constructions comprise several characteristics, including environmental considerations, functional requirements, protective properties, execution processes, and creative elements. The significance and relevance of this research are shown by the validation of the study's results using SEM. The study makes a valuable contribution towards the progression of polyurea coating use within the concrete building sector.
The industrial production of cement contributes significantly to greenhouse gas emissions, making it crucial to address and reduce these emissions by using fly ash (FA) as a potential replacement. Besides, Graphene oxide (GO) was utilized as nanoparticle in concrete to augment its mechanical characteristics, deformation resistance, and drying shrinkage behaviours. However, the researchers used Response Surface Methodology (RSM) to evaluate the compressive strength (CS), tensile strength (TS), flexural strength (FS), modulus of elasticity (ME), and drying shrinkage (DS) of concrete that was mixed with 5-15% FA at a 5% increment, along with 0.05%, 0.065%, and 0.08% of GO as potential nanomaterials. The concrete samples were prepared by using mix proportions of design targeted CS of about 45 MPa at 28 days. From investigational outcomes, the concrete with 10% FA and 0.05% GO exhibited the greatest CS, TS, FS, and ME values of 62 MPa, 4.96 MPa, 6.82 MPa, and 39.37 GPa, on 28 days correspondingly. Besides, a reduction in the DS of concrete was found as the amounts of FA and GO increased. Moreover, the development and validation of response prediction models were conducted utilizing analysis of variance (ANOVA) at a significance level of 95%. The coefficient of determination (R2) values for the models varied from 94 to 99.90%. Research study indicated that including 10% fly ash (FA) as a substitute for cement, when combined with 0.05% GO, in concrete yields the best results. Therefore, this approach is an excellent option for the building sector.
This research study is performed on the self-compacting geopolymer concrete (SCGC) combining coal bottom ash (CBA) and metakaolin (MK) as a substitution for GGBFS alone and combined for analysing the fresh properties (slump flow, V-Funnel, and T50 flow), mechanical characteristics (compressive, splitting tensile and flexural strengths) and durability tests (permeability and sulfate attack test). Though, total 195 SCGC samples were made and tested for 28 days. It has been revealed that the consumption of CBA and MK as a substitution for GGBFS alone and combine in the production of SCGC is decreased the workability of SCGC while mechanical characteristics of SCGC are enhanced by utilizing CBA and MK as a substitution for GGBFS alone and combine up to 10%. In addition, the compressive, splitting tensile and flexural strengths were calculated by 59.40 MPa, 5.68 MPa, and 6.12 MPa while using the 5CBA5MK as a substitution for GGBFS in the production of SCGC after 28 days correspondingly. Furthermore, the permeability is decreased by growing the quantity of CBA and MK by the weight of GGBFS alone and jointly in the production of SCGC after 28 days. Besides, the minimum change in length of the SCGC specimen is recorded by 0.062 mm at 7.5MK7.5CBA while the maximum change in length is calculated by 0.11 mm at 10CBA10MK as a substitution for GGBFS at 180 days correspondingly. In addition, the embodied carbon is recorded reduce as the addition of CBA while it is getting higher when the accumulation of MK alone or combined with CBA in SCGC. Besides, response models for prediction were constructed and confirmed using ANOVA at an accuracy rate of 95%. The models' R2 fluctuated from 88 to 99%. It has been observed that the utilization of CBA and MK alone and together up to 10% as substitution for GGBFS in geopolymer concrete provides the best results therefore it is suggested for structural applications.
Reinforced concrete (RC) constructions are seriously threatened by chloride-induced corrosion (CIC) and carbonation, which can result in structural degradation, safety issues, and financial losses. Electrochemical methods and microstructural analysis tests are some of the laboratory techniques used to examine key elements of CIC, such as the impact of different variables and the efficacy of mitigation solutions. In situ studies that make use of non-destructive testing, chloride profiling, and half-cell potential measurements offer important new insights into the long-term performance and causes of RC structure deterioration in real-world circumstances. Non-destructive approaches for CIC detection are emerging these days and provide fruitful results. Studies have focused on the use of these approaches for CIC detection on small specimens in the lab as well as on full-scale experiments in the field. This review covers both in situ monitoring and laboratory studies to provide a thorough analysis of CIC.
This study was carried out to investigate the effect of the diamond-shaped Interlocking Chain Plastic Bead (ICPB) on fiber-reinforced fly ash-based geopolymer concrete. In this study, geopolymer concrete was produced using fly ash, NaOH, silicate, aggregate, and nylon66 fibers. Characterization of fly ash-based geopolymers (FGP) and fly ash-based geopolymer concrete (FRGPC) included chemical composition via XRF, functional group analysis via FTIR, compressive strength determination, flexural strength, density, slump test, and water absorption. The percentage of fiber volume added to FRGPC and FGP varied from 0% to 0.5%, and 1.5% to 2.0%. From the results obtained, it was found that ICBP fiber led to a negative result for FGP at 28 days but showed a better performance in FRGPC reinforced fiber at 28 and 90 days compared to plain geopolymer concrete. Meanwhile, NFRPGC showed that the optimum result was obtained with 0.5% of fiber addition due to the compressive strength performance at 28 days and 90 days, which were 67.7 MPa and 970.13 MPa, respectively. Similar results were observed for flexural strength, where 0.5% fiber addition resulted in the highest strength at 28 and 90 days (4.43 MPa and 4.99 MPa, respectively), and the strength performance began to decline after 0.5% fiber addition. According to the results of the slump test, an increase in fiber addition decreases the workability of geopolymer concrete. Density and water absorption, however, increase proportionally with the amount of fiber added. Therefore, diamond-shaped ICPB fiber in geopolymer concrete exhibits superior compressive and flexural strength.