Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Annuar NAK, Azlan UK, Mediani A, Tong X, Han R, Al-Olayan E, et al.
    Biomed Pharmacother, 2024 Feb;171:116134.
    PMID: 38219389 DOI: 10.1016/j.biopha.2024.116134
    Mitragynine is one of the main psychoactive alkaloids in Mitragyna speciosa Korth. (kratom). It has opium-like effects by acting on μ-, δ-, and κ-opioid receptors in the brain. The compound also interacts with other receptors, such as adrenergic and serotonergic receptors and neuronal Ca2+ channels in the central nervous system to have its neuropharmacological effects. Mitragynine has the potential to treat diseases related to neurodegeneration such as Alzheimer's disease and Parkinson's disease, as its modulation on the opioid receptors has been reported extensively. This review aimed to provide an up-to-date and critical overview on the neuropharmacological effects, mechanisms of action, pharmacokinetics and safety of mitragynine as a prospective psychotropic agent. Its multiple neuropharmacological effects on the brain include antinociceptive, anti-inflammatory, antidepressant, sedative, stimulant, cognitive, and anxiolytic activities. The potential of mitragynine to manage opioid withdrawal symptoms related to opioid dependence, its pharmacokinetics and toxic effects were also discussed. The interaction of mitragynine with various receptors in the brain produce diverse neuropharmacological effects, which have beneficial properties in neurological disorders. However, further studies need to be carried out on mitragynine to uncover its complex mechanisms of action, pharmacokinetics, pharmacodynamic profiles, addictive potential, and safe dosage to prevent harmful side effects.
  2. Sayuti NH, Zulkefli N, Tan JK, Saad N, Baharum SN, Hamezah HS, et al.
    Molecules, 2023 Sep 20;28(18).
    PMID: 37764502 DOI: 10.3390/molecules28186726
    Neuronal models are an important tool in neuroscientific research. Hydrogen peroxide (H2O2), a major risk factor of neuronal oxidative stress, initiates a cascade of neuronal cell death. Polygonum minus Huds, known as 'kesum', is widely used in traditional medicine. P. minus has been reported to exhibit a few medicinal and pharmacological properties. The current study aimed to investigate the neuroprotective effects of P. minus ethanolic extract (PMEE) on H2O2-induced neurotoxicity in SH-SY5Y cells. LC-MS/MS revealed the presence of 28 metabolites in PMEE. Our study showed that the PMEE provided neuroprotection against H2O2-induced oxidative stress by activating the Nrf2/ARE, NF-κB/IκB and MAPK signaling pathways in PMEE pre-treated differentiated SH-SY5Y cells. Meanwhile, the acetylcholine (ACH) level was increased in the oxidative stress-induced treatment group after 4 h of exposure with H2O2. Molecular docking results with acetylcholinesterase (AChE) depicted that quercitrin showed the highest docking score at -9.5 kcal/mol followed by aloe-emodin, afzelin, and citreorosein at -9.4, -9.3 and -9.0 kcal/mol, respectively, compared to the other PMEE's identified compounds, which show lower docking scores. The results indicate that PMEE has neuroprotective effects on SH-SY5Y neuroblastoma cells in vitro. In conclusion, PMEE may aid in reducing oxidative stress as a preventative therapy for neurodegenerative diseases.
  3. Natnan ME, Low CF, Chong CM, Bunawan H, Baharum SN
    Sci Rep, 2023 Aug 08;13(1):12830.
    PMID: 37553472 DOI: 10.1038/s41598-023-40096-7
    Grouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.
  4. Ting TY, Li Y, Bunawan H, Ramzi AB, Goh HH
    J Biosci Bioeng, 2023 Apr;135(4):259-265.
    PMID: 36803862 DOI: 10.1016/j.jbiosc.2023.01.010
    Saccharomyces cerevisiae has a long-standing history of biotechnological applications even before the dawn of modern biotechnology. The field is undergoing accelerated advancement with the recent systems and synthetic biology approaches. In this review, we highlight the recent findings in the field with a focus on omics studies of S. cerevisiae to investigate its stress tolerance in different industries. The latest advancements in S. cerevisiae systems and synthetic biology approaches for the development of genome-scale metabolic models (GEMs) and molecular tools such as multiplex Cas9, Cas12a, Cpf1, and Csy4 genome editing tools, modular expression cassette with optimal transcription factors, promoters, and terminator libraries as well as metabolic engineering. Omics data analysis is key to the identification of exploitable native genes/proteins/pathways in S. cerevisiae with the optimization of heterologous pathway implementation and fermentation conditions. Through systems and synthetic biology, various heterologous compound productions that require non-native biosynthetic pathways in a cell factory have been established via different strategies of metabolic engineering integrated with machine learning.
  5. Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS, et al.
    Int J Mol Sci, 2023 Feb 27;24(5).
    PMID: 36902038 DOI: 10.3390/ijms24054607
    Wounds are considered to be a serious problem that affects the healthcare sector in many countries, primarily due to diabetes and obesity. Wounds become worse because of unhealthy lifestyles and habits. Wound healing is a complicated physiological process that is essential for restoring the epithelial barrier after an injury. Numerous studies have reported that flavonoids possess wound-healing properties due to their well-acclaimed anti-inflammatory, angiogenesis, re-epithelialization, and antioxidant effects. They have been shown to be able to act on the wound-healing process via expression of biomarkers respective to the pathways that mainly include Wnt/β-catenin, Hippo, Transforming Growth Factor-beta (TGF-β), Hedgehog, c-Jun N-Terminal Kinase (JNK), NF-E2-related factor 2/antioxidant responsive element (Nrf2/ARE), Nuclear Factor Kappa B (NF-κB), MAPK/ERK, Ras/Raf/MEK/ERK, phosphatidylinositol 3-kinase (PI3K)/Akt, Nitric oxide (NO) pathways, etc. Hence, we have compiled existing evidence on the manipulation of flavonoids towards achieving skin wound healing, together with current limitations and future perspectives in support of these polyphenolic compounds as safe wound-healing agents, in this review.
  6. Mediani A, Hamezah HS, Jam FA, Mahadi NF, Chan SXY, Rohani ER, et al.
    Front Nutr, 2022;9:1057366.
    PMID: 36518998 DOI: 10.3389/fnut.2022.1057366
    Preserving fresh food, such as meat, is significant in the effort of combating global food scarcity. Meat drying is a common way of preserving meat with a rich history in many cultures around the globe. In modern days, dried meat has become a well enjoyed food product in the market because of its long shelf-life, taste and health benefits. This review aims to compile information on how the types of meat, ingredients and the used drying technologies influence the characteristics of dried meat in physicochemical, microbial, biochemical and safety features along with technological future prospects in the dried meat industry. The quality of dried meat can be influenced by a variety of factors, including its production conditions and the major biochemical changes that occur throughout the drying process, which are also discussed in this review. Additionally, the sensory attributes of dried meat are also reviewed, whereby the texture of meat and the preference of the market are emphasized. There are other aspects and concerning issues that are suggested for future studies. It is well-known that reducing the water content in meat helps in preventing microbial growth, which in turn prevents the presence of harmful substances in meat. However, drying the meat can change the characteristics of the meat itself, making consumers concerned on whether dried meat is safe to be consumed on a regular basis. It is important to consider the role of microbial enzymes and microbes in the preservation of their flavor when discussing dried meats and dried meat products. The sensory, microbiological, and safety elements of dried meat are also affected by these distinctive changes, which revolve around customer preferences and health concerns, particularly how drying is efficient in eliminating/reducing hazardous bacteria from the fish. Interestingly, some studies have concentrated on increasing the efficiency of dried meat production to produce a safer range of dried meat products with less effort and time. This review compiled important information from all available online research databases. This review may help the food sector in improving the efficiency and safety of meat drying, reducing food waste, while maintaining the quality and nutritional content of dried meat.
  7. Salleh NA, Rosli FN, Akbar MA, Yusof A, Sahrani FK, Razak SA, et al.
    Mar Pollut Bull, 2021 Nov;172:112850.
    PMID: 34391012 DOI: 10.1016/j.marpolbul.2021.112850
    This study investigates bacterial diversity and potential pathogens in the international ships' ballast water at Tanjung Pelepas Port, Malaysia, using 16S rRNA amplicon sequencing. Thirty-four bacterial phylum, 305 families, 577 genera, and 941 species were detected in eight ballast water samples of different origins. The similarity of the bacterial composition between samples was found to be random and not tied to geographical locations. The bacterial abundance did not seem to be affected by related physicochemical except for temperature. Ballast water samples with a temperature lower than 25 °C showed a relatively lower bacterial abundance. A total of 33 potential pathogens were detected from all ballast water samples. Pseudomonas spp., Tenacibaculum spp., Flavobacteriaceae spp., Halomonas spp., and Acinetobacter junii are the potential pathogens with more than 10% OTU prevalence. This study would provide beneficial information for further enhancing ballast water microorganism guidelines in Malaysia.
  8. Akbar MA, Yusof NYM, Sahrani FK, Usup G, Ahmad A, Baharum SN, et al.
    Biology (Basel), 2021 Aug 25;10(9).
    PMID: 34571703 DOI: 10.3390/biology10090826
    The toxin-producing dinoflagellate Alexandrium minutum is responsible for the outbreaks of harmful algae bloom (HABs). It is a widely distributed species and is responsible for producing paralytic shellfish poisoning toxins. However, the information associated with the environmental adaptation pathway and toxin biosynthesis in this species is still lacking. Therefore, this study focuses on the functional characterization of A. minutum unigenes obtained from transcriptome sequencing using the Illumina Hiseq 4000 sequencing platform. A total of 58,802 (47.05%) unigenes were successfully annotated using public databases such as NCBI-Nr, UniprotKB, EggNOG, KEGG, InterPRO and Gene Ontology (GO). This study has successfully identified key features that enable A. minutum to adapt to the marine environment, including several carbon metabolic pathways, assimilation of various sources of nitrogen and phosphorus. A. minutum was found to encode homologues for several proteins involved in saxitoxin biosynthesis, including the first three proteins in the pathway of saxitoxin biosynthesis, namely sxtA, sxtG and sxtB. The comprehensive transcriptome analysis presented in this study represents a valuable resource for understanding the dinoflagellates molecular metabolic model regarding nutrient acquisition and biosynthesis of saxitoxin.
  9. Roslan MAM, Jefri NQUA, Ramlee N, Rahman NAA, Chong NHH, Bunawan H, et al.
    Saudi J Biol Sci, 2021 May;28(5):3001-3012.
    PMID: 34012331 DOI: 10.1016/j.sjbs.2021.02.041
    Food waste (FW) minimization at the source by using food waste biodigester (FWBs) has a vast potential to lower down the impact of increasing organic fraction in municipal solid waste generation. To this end, this research sought to check the performance of locally isolated hydrolase-producing bacteria (HPB) to improve food waste biodegradation rate. Two under-explored HPB identified as Bacillus paralicheniformis GRA2 and Bacillus velezensis TAP5 were able to produce maximum amylase, cellulase, protease and lipase activities, and demonstrated a significant hydrolase synergy in co-culture fermentation. In vitro biodegradation analysis of both autoclaved and non-autoclaved FW revealed that the HPB inoculation was effective to degrade total solids (>62%), protein (>19%), total fat (>51), total sugar (>86%), reducing sugar (>38%) and starch (>50%) after 8-day incubation. All co-culture treatments were recorded superior to the respective monocultures and the uninoculated control. The results of FW biodegradation using batch-biodigester trial indicated that the 1500 mL and 1000 mL inoculum size of HPB inoculant reached a plateau on the 4th day, with gross biodegradation percentage (GBP) of >85% as compared to control (66.4%). The 1000 mL inoculum was sufficient to achieve the maximum GBP (>90%) of FW after an 8-day biodigestion in a FWB.
  10. Kannan M, Mohamad Saad M, Zainal Z, Kassim H, Ismail I, Talip N, et al.
    Iran J Biotechnol, 2020 Oct;18(4):e2566.
    PMID: 34056024 DOI: 10.30498/IJB.2020.2566
    Background: Rice tungro disease (RTD) is a viral disease mainly affecting rice in Asia. RTD caused by Rice tungro bacilliform virus and Rice tungro spherical virus. To date, there are only 5 RTSV isolates have been reported.

    Objectives: In this study, we aimed to report the complete nucleotide sequence of Malaysian isolate of Rice tungro spherical virus Seberang Perai (RTSV-SP) for the first time. RTSV-SP was characterized and its evolutionary relationship with previously reported Indian and Philippines isolates were elucidated.

    Materials and Methods: RTSV-SP isolate was isolated from a recent outbreak in a paddy field in Seberang Perai zone of Malaysia. Its complete genome was amplified by RT-PCR, cloned and sequenced.

    Results: Sequence analysis indicated that the genome of RTSV-SP consisted of 12,173 nucleotides (nt). Comparative analysis of 6 complete genome sequences using Clustal Omega showed that Seberang Perai isolate shared the highest nucleotide identity (96.04%) with Philippine-A isolate, except that the sORF-2 of RTSV-SP is shorter than RTSV Philippine-A by 27 amino acid residues. RTSV-SP found to cluster in Southeast Asia (SEA) group based on the whole genome sequence phylogenetic analysis using MEGA X software.

    Conclusions: Phylogenetic classification of RTSV isolates based on the complete nucleotide sequences showed more distinctive clustering pattern with the addition of RTSV-SP whole genome to the available isolates. Present study described the isolation and molecular characterization of RTSV-SP.

  11. Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H
    Viruses, 2020 07 26;12(8).
    PMID: 32722532 DOI: 10.3390/v12080803
    Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus-host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
  12. Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, et al.
    Mar Drugs, 2020 Feb 05;18(2).
    PMID: 32033403 DOI: 10.3390/md18020103
    Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
  13. Ramzi AB, Baharum SN, Bunawan H, Scrutton NS
    Front Bioeng Biotechnol, 2020;8:608918.
    PMID: 33409270 DOI: 10.3389/fbioe.2020.608918
    Increasing demands for the supply of biopharmaceuticals have propelled the advancement of metabolic engineering and synthetic biology strategies for biomanufacturing of bioactive natural products. Using metabolically engineered microbes as the bioproduction hosts, a variety of natural products including terpenes, flavonoids, alkaloids, and cannabinoids have been synthesized through the construction and expression of known and newly found biosynthetic genes primarily from model and non-model plants. The employment of omics technology and machine learning (ML) platforms as high throughput analytical tools has been increasingly leveraged in promoting data-guided optimization of targeted biosynthetic pathways and enhancement of the microbial production capacity, thereby representing a critical debottlenecking approach in improving and streamlining natural products biomanufacturing. To this end, this mini review summarizes recent efforts that utilize omics platforms and ML tools in strain optimization and prototyping and discusses the beneficial uses of omics-enabled discovery of plant biosynthetic genes in the production of complex plant-based natural products by bioengineered microbes.
  14. Tomlinson KR, Pablo-Rodriguez JL, Bunawan H, Nanyiti S, Green P, Miller J, et al.
    Mol Plant Pathol, 2019 08;20(8):1080-1092.
    PMID: 31154674 DOI: 10.1111/mpp.12813
    Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies.
  15. Kannan M, Saad MM, Talip N, Baharum SN, Bunawan H
    Microbiol Resour Announc, 2019 May 16;8(20).
    PMID: 31097500 DOI: 10.1128/MRA.00262-19
    Rice tungro disease was discovered in Malaysia in the 1930s. The first and only genome of Rice tungro bacilliform virus (RTBV) isolated from rice in Malaysia was sequenced in 1999. After nearly two decades, here, we present the complete genome sequence of an RTBV isolate in rice from Seberang Perai, Malaysia.
  16. Duff-Farrier CRA, Mbanzibwa DR, Nanyiti S, Bunawan H, Pablo-Rodriguez JL, Tomlinson KR, et al.
    Mol Biotechnol, 2019 Feb;61(2):93-101.
    PMID: 30484144 DOI: 10.1007/s12033-018-0139-7
    Cassava brown streak disease (CBSD) has major impacts on yield and quality of the tuberous roots of cassava in Eastern and Central Arica. At least two Potyviridae species cause the disease: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Cloned viral genome sequences known as infectious clones (ICs) have been important in the study of other viruses, both as a means of standardising infectious material and characterising viral gene function. IC construction is often technically challenging for Potyviridae due to sequence instability in E. coli. Here, we evaluate three methods for the construction of infectious clones for CBSD. Whilst a simple IC for in vitro transcription was made for UCBSV isolate 'Kikombe', such an approach failed to deliver full-length clones for CBSV isolates 'Nampula' or 'Tanza', necessitating more complex approaches for their construction. The ICs successfully generated symptomatic infection in the model host N. benthamiana and in the natural host cassava. This shows that whilst generating ICs for CBSV is still a technical challenge, a structured approach, evaluating both in vitro and in planta transcription systems should successfully deliver ICs, allowing further study into the symptomology and virulence factors in this important disease complex.
  17. Kannan M, Ismail I, Bunawan H
    Viruses, 2018 09 13;10(9).
    PMID: 30217014 DOI: 10.3390/v10090492
    Maize dwarf mosaic virus (MDMV) is a serious maize pathogen, epidemic worldwide, and one of the most common virus diseases for monocotyledonous plants, causing up to 70% loss in corn yield globally since 1960. MDMV belongs to the genus Potyvirus (Potyviridae) and was first identified in 1964 in Illinois in corn and Johnsongrass. MDMV is a single stranded positive sense RNA virus and is transmitted in a non-persistent manner by several aphid species. MDMV is amongst the most important virus diseases in maize worldwide. This review will discuss its genome, transmission, symptomatology, diagnosis and management. Particular emphasis will be given to the current state of knowledge on the diagnosis and control of MDMV, due to its importance in reducing the impact of maize dwarf mosaic disease, to produce an enhanced quality and quantity of maize.
  18. Gunasekaran D, Bunawan H, Ismail I, Noor NM
    Data Brief, 2018 Aug;19:1423-1427.
    PMID: 30229014 DOI: 10.1016/j.dib.2018.06.025
    In this dataset, we differentiate four different tissues of Cosmos caudatus Kunth (leaves, flowers, stem and root) obtained from UKM Bangi plot, based on Fourier transform-infrared spectroscopy. Different tissues of C. caudatus demonstrated the position and intensity of characteristic peaks at 4000-450 cm-1. Principal component analysis (PCA) shows three main groups were formed. The samples from leaves and flowers were found to be clustered together in one group, while the samples from stems and roots were clustered into two separate groups, respectively. This data provides an insight into the fingerprint identification and distribution of metabolites in the different organs of this species.
  19. Bunawan H, Yen CC, Yaakop S, Noor NM
    BMC Res Notes, 2017 Jan 26;10(1):67.
    PMID: 28126013 DOI: 10.1186/s13104-017-2379-1
    The chloroplastic trnL intron and the nuclear internal transcribed spacer (ITS) region were sequenced for 11 Nepenthes species recorded in Peninsular Malaysia to examine their phylogenetic relationship and to evaluate the usage of trnL intron and ITS sequences for phylogenetic reconstruction of this genus.
  20. Samsir SA, Bunawan H, Yen CC, Noor NM
    Data Brief, 2016 Sep;8:1-5.
    PMID: 27257614 DOI: 10.1016/j.dib.2016.04.062
    In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600-3100 cm(-) (1) in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South) were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast) were in another clustered group.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links