Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Abdullah ZL, Chee HY, Yusof R, Mohd Fauzi F
    ACS Omega, 2023 Sep 12;8(36):32483-32497.
    PMID: 37720780 DOI: 10.1021/acsomega.3c02607
    Dengue virus (DENV) infection is one of the most widely spread flavivirus infections. Despite the fatality it could cause, no antiviral treatment is currently available to treat the disease. Hence, this study aimed to repurpose old drugs as novel DENV NS3 inhibitors. Ligand-based (L-B) and proteochemometric (PCM) prediction models were built using 62,354 bioactivity data to screen for potential NS3 inhibitors. Selected drugs were then subjected to the foci forming unit reduction assay (FFURA) and protease inhibition assay. Finally, molecular docking was performed to validate these results. The in silico studies revealed that both models performed well in the internal and external validations. However, the L-B model showed better accuracy in the external validation in terms of its sensitivity (0.671). In the in vitro validation, all drugs (zileuton, trimethadione, and linalool) were able to moderately inhibit the viral activities at the highest concentration tested. Zileuton showed comparable results with linalool when tested at 2 mM against the DENV NS3 protease, with a reduction of protease activity at 17.89 and 18.42%, respectively. Two new compounds were also proposed through the combination of the selected drugs, which are ziltri (zilueton + trimethadione) and zilool (zileuton + linalool). The molecular docking study confirms the in vitro observations where all drugs and proposed compounds were able to achieve binding affinity ≥ -4.1 kcal/mol, with ziltri showing the highest affinity at -7.7 kcal/mol, surpassing the control, panduratin A. The occupation of both S1 and S2 subpockets of NS2B-NS3 may be essential and a reason for the lower binding energy shown by the proposed compounds compared to the screened drugs. Based on the results, this study provided five potential new lead compounds (ziltri, zilool, zileuton, linalool, and trimethadione) for DENV that could be modified further.
  2. Abu Bakar S, Shafee N, Chee HY
    Med J Malaysia, 1999 Sep;54(3):402-3.
    PMID: 11045072
  3. AbuBakar S, Shafee N, Chee HY
    Med J Malaysia, 1998 Sep;53(3):293-5.
    PMID: 10968171
    Infectious agent(s) causing the fatal Sarawak acute childhood viral infection (SACVI) has not been identified. In the present study, results indicating that inocula prepared from the fatal cases of SACVI induced apoptosis in Vero cell cultures are presented. These findings suggest the possible involvement of apoptotic cellular responses in SACVI.
  4. AbuBakar S, Azmi A, Mohamed-Saad N, Shafee N, Chee HY
    Malays J Pathol, 1997 Jun;19(1):41-51.
    PMID: 10879241
    The present study was undertaken to investigate the antibody responses of dengue fever (DF) patients to specific dengue virus proteins. Partially purified dengue 2 New Guinea C (NGC) strain virus was used as antigen. Under the present experimental protocols, it was observed that almost all DF patients' sera had detectable presence of antibodies which recognize the dengue 2 envelope (E) protein. The convalescent-phase sera especially had significant detectable IgG, IgM and IgE against the protein. In addition, IgGs specific against the NS1 dimer and PrM were also detected. Antibody against the core (C) protein, however, was not detectable in any of the DF patients' sera. The substantial presence of IgG against the PrM in the convalescent-phase sera, and the presence of IgE specific for the E, reflect the potential importance of these antibody responses in the pathogenesis of dengue.
  5. AbuBakar S, Chee HY, Al-Kobaisi MF, Xiaoshan J, Chua KB, Lam SK
    Virus Res, 1999 May;61(1):1-9.
    PMID: 10426204
    Thirteen enterovirus 71 (EV71) isolates were obtained from both fatal and non-fatal infections of patients seen in Peninsula Malaysia and in Sarawak during an outbreak of hand, foot and mouth disease (HFMD) in Malaysia in 1997, with incidences of fatal brainstem encephalomyelitis. The isolates were identified using immunofluorescence staining, neutralization assays, and partial sequencing of the 5' untranslated regions (UTR). Assessment of the potential genetic relationships of the isolates using the partial 5'UTR sequences suggested clustering of the isolates into at least two main clusters. Isolates from Peninsula Malaysia were found in both clusters whereas Sarawak-derived isolates clustered only in cluster II. Isolates derived from fatal infections, however, occurred in both clusters and no distinctive nucleotide sequences could be attributed to the fatal isolates. Examination of the nucleotide sequences revealed at least 13 nucleotide positions in all the isolates which differ completely from the previously reported EV71 5'UTR sequences. In addition, at least 11 nucleotide position differences within the 5'UTR were noted which differentiated cluster I from cluster II. Predicted secondary RNA structures drawn using the nucleotide sequences also suggested differences between isolates from the two clusters. These findings suggest the presence of at least two potentially virulent EV71 co-circulating in Malaysia during the 1997 HFMD outbreak.
  6. Abubakar S, Shafee N, Chee HY
    Malays J Pathol, 1998 Dec;20(2):71-81.
    PMID: 10879266
    Identification of the aetiologic agent(s) associated with an outbreak of fatal childhood viral infection in Sarawak, Malaysia, in mid 1997 remains elusive. It is reported here that African green monkey kidney (Vero) and human monocytic (U937) cells treated with inocula derived from clinical specimens of some of these fatal cases showed the presence of cellular genomic DNA degradation when the extracted DNA was separated by pulsed field gel electrophoresis (PFGE), oligonucleosomal DNA ladders characteristic of apoptotic cells when the infected cells' DNA was separated by agarose gel electrophoresis, and apoptotic cellular DNA fragmentation when cells were stained using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL). These results suggest that inocula derived from the patients' clinical specimens contain factors which stimulate apoptotic cellular responses in vitro.
  7. Abubakar S, Chee HY, Shafee N, Chua KB, Lam SK
    Scand. J. Infect. Dis., 1999;31(4):331-5.
    PMID: 10528868
    Enterovirus 5'UTR sequences were detected by RT-PCR in 22 out of 47 suspected hand, foot and mouth disease (HFMD) patients during an outbreak of the disease with incidences of fatal brainstem encephalomyelitis in Malaysia in 1997. Genetic and phylogenetic analyses of the isolates 5'UTR sequences suggest the presence of predominantly enteroviruses with high sequence similarities to Echovirus 1 and Coxsackievirus A9 in the Malaysian peninsula. No fatal cases, however, were associated with these isolates. The remaining isolates, including all (4/4) isolates of the fatal cases from the Malaysian peninsula and Sarawak shared very high sequence identity with enterovirus 71MS (EV71). These findings suggest that several enteroviruses were circulating in Malaysia during the outbreak period, with only EV71 causing fatal infections.
  8. Aliyu B, Raji YE, Chee HY, Wong MY, Sekawi ZB
    PLoS One, 2022;17(12):e0277206.
    PMID: 36454880 DOI: 10.1371/journal.pone.0277206
    Efforts are ongoing by researchers globally to develop new drugs or repurpose existing ones for treating COVID-19. Thus, this led to the use of oseltamivir, an antiviral drug used for treating influenza A and B viruses, as a trial drug for COVID-19. However, available evidence from clinical studies has shown conflicting results on the effectiveness of oseltamivir in COVID-19 treatment. Therefore, this systematic review and meta-analysis was performed to assess the clinical safety and efficacy of oseltamivir for treating COVID-19. The study was conducted according to the PRISMA guidelines, and the priori protocol was registered in PROSPERO (CRD42021270821). Five databases were searched, the identified records were screened, and followed by the extraction of relevant data. Eight observational studies from four Asian countries were included. A random-effects model was used to pool odds ratios (ORs), mean differences (MD), and their 95% confidence intervals (CI) for the study analysis. Survival was not significantly different between all categories of oseltamivir and the comparison groups analysed. The duration of hospitalisation was significantly shorter in the oseltamivir group following sensitivity analysis (MD -5.95, 95% CI -9.91--1.99 p = 0.003, heterogeneity I2 0%, p = 0.37). The virological, laboratory and radiological response rates were all not in favour of oseltamivir. However, the electrocardiographic safety parameters were found to be better in the oseltamivir group. However, more studies are needed to establish robust evidence on the effectiveness or otherwise of oseltamivir usage for treating COVID-19.
  9. Aliyu IA, Ling KH, Md Hashim N, Chee HY
    Rev Med Virol, 2019 05;29(3):e2038.
    PMID: 30746844 DOI: 10.1002/rmv.2038
    Annexin A2 is a membrane scaffolding and binding protein, which mediated various cellular events. Its functions are generally affected by cellular localization. In the cytoplasm, they interacted with different phospholipid membranes in Ca2+ -dependent manner and play vital roles including actin binding, remodeling and dynamics, cytoskeletal rearrangement, and lipid-raft microdomain formation. However, upon cell exposure to certain stimuli, annexin A2 translocates to the external leaflets of the plasma membrane where annexin A2 was recently reported to serve as a virus receptor, play an important role in the formation of virus replication complex, or implicated in virus assembly and budding. Here, we review some of annexin A2 roles in virus infections and the potentiality of targeting annexin A2 in the design of novel and promising antivirus agent that may have a broader consequence in virus therapy.
  10. Chee HY, AbuBakar S
    Biochem Biophys Res Commun, 2004 Jul 16;320(1):11-7.
    PMID: 15207695
    Binding of dengue virus 2 (DENV-2) to C6/36 mosquito cells protein was investigated. A 48 kDa DENV-2-binding C6/36 cells protein (D2BP) was detected in a virus overlay protein-binding assay. The binding occurred only to the C6/36 cells cytosolic protein fraction and it was inhibited by free D2BP. D2BP was shown to bind to DENV-2 E in the far-Western-binding studies and using mass spectrometry (MS) and MS/MS, peptide masses of the D2BP that matched to beta-tubulin and alpha-tubulin chains were identified. These findings suggest that DENV-2 through DENV-2 E binds directly to a 48 kDa tubulin or tubulin-like protein of C6/36 mosquito cells.
  11. Fish-Low CY, Abubakar S, Othman F, Chee HY
    Malays J Pathol, 2019 Apr;41(1):41-46.
    PMID: 31025636
    INTRODUCTION: Dengue virus (DENV), the causative agent of dengue disease exists in sylvatic and endemic ecotypes. The cell morphological changes and viral morphogenesis of two dengue ecotypes were examined at the ultrastructural level to identify potential similarities and differences in the surrogate model of enzootic host.

    MATERIALS AND METHODS: Vero cells were inoculated with virus at a multiplicity of infection (MOI) of 0.1. Cell cultures were harvested over a time course and processed for transmission electron microscopic imaging.

    RESULTS: The filopodia protrusions on cell periphery preceded virus entry. Additionally, sylvatic DENV infection was found spreading slower than the endemic DENV. Morphogenesis of both dengue ecotypes was alike but at different level of efficiency in the permissive cells.

    CONCLUSIONS: This is the first ultrastructural study on sylvatic DENV and this comparative study revealed the similarities and differences of cellular responses and morphogenesis of two dengue ecotypes in vitro. The study revealed the weaker infectivity of sylvatic DENV in the surrogate model of enzootic host, which supposed to support better replication of enzootic DENV than endemic DENV.

  12. Fish-Low CY, Abu Bakar S, Othman F, Chee HY
    Trop Biomed, 2018 Dec 01;35(4):1154-1159.
    PMID: 33601863
    Dengue virus (DENV) is maintained and circulated in both sylvatic/enzootic and endemic/human cycles and spill over infection of sylvatic DENV into human populations has been reported. Extensive deforestation and increase human activities in forest may increase the risk of human exposure to sylvatic dengue infection and this may become a threat to human. Present study investigated the changes in cell morphology and viral morphogenesis upon infection with sylvatic and endemic ecotypes in human monocytic U-937 cells using transmission electron microscopy. Autophagy, a process that is either pro-viral or anti-viral, was observed in U-937 cells of both infections, however only the replication of endemic DENV was evidenced. An insight into the infection responses of sylvatic progenitors of DENV in susceptible host cells may provide better understanding on dengue emergence in human populations.
  13. Foo KY, Chee HY
    Biomed Res Int, 2015;2015:427814.
    PMID: 26347881 DOI: 10.1155/2015/427814
    Flaviviruses are potentially human pathogens that cause major epidemics worldwide. Flavivirus interacts with host cell factors to form a favourable virus replication site. Cell cytoskeletons have been observed to have close contact with flaviviruses, which expands the understanding of cytoskeleton functions during virus replication, although many detailed mechanisms are still unclear. The interactions between the virus and host cytoskeletons such as actin filaments, microtubules, and intermediate filaments have provided insight into molecular alterations during the virus infection, such as viral entry, in-cell transport, scaffold assembly, and egress. This review article focuses on the utilization of cytoskeleton by Flavivirus and the respective functions during virus replication.
  14. Ghani NA, Shohaimi S, Hee AK, Chee HY, Emmanuel O, Alaba Ajibola LS
    Trop Med Infect Dis, 2019 Feb 15;4(1).
    PMID: 30781369 DOI: 10.3390/tropicalmed4010037
    BACKGROUND: Dengue has affected more than one-third of the world population and Malaysia has recorded an increase in the number of dengue cases since 2012. Selangor state recorded the highest number of dengue cases in Malaysia. Most of the dengue infections occur among people living in hotspot areas of dengue. This study aims to compare Knowledge, Attitude, and Practice among communities living in hotspot and non-hotspot dengue areas.

    METHOD: Communities living in 20 hotspot and 20 non-hotspot areas in Selangor were chosen in this study where 406 participants were randomly selected to answer questionnaires distributed at their housing areas. Total marks of each categories were compared using t-test.

    RESULT: Results show that there were significant mean differences in marks in Knowledge (p value: 0.003; 15.41 vs. 14.55) and Attitude (p value: < 0.001; 11.41 vs. 10.33), but not Practice (p value 0.101; 10.83 vs. 10.47) categories between communities of non-hotspot and hotspot areas. After considering two confounding variables which are education level and household income, different mean marks are found to be significant in Knowledge when education level acts as a covariate and Attitude when both act as covariates.

    CONCLUSION: Overall results show that people living in non-hotspot areas had better knowledge and attitude than people living in hotspot areas, but no difference was found in practice. This suggests that public health education should be done more frequently with people with a low education background and low household income, especially in hotspot areas to fight dengue outbreak and make dengue cases decrease effectively.

  15. Khaw YS, Chan YF, Jafar FL, Othman N, Chee HY
    Front Microbiol, 2016;7:543.
    PMID: 27199901 DOI: 10.3389/fmicb.2016.00543
    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5' and 3' non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63-81% among themselves and 63-96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection.
  16. Lam JY, Low GK, Chee HY
    PLoS Negl Trop Dis, 2020 02;14(2):e0008074.
    PMID: 32049960 DOI: 10.1371/journal.pntd.0008074
    BACKGROUND: Leptospirosis is often difficult to diagnose because of its nonspecific symptoms. The drawbacks of direct isolation and serological tests have led to the increased development of nucleic acid-based assays, which are more rapid and accurate. A meta-analysis was performed to evaluate the diagnostic accuracy of genetic markers for the detection of Leptospira in clinical samples.

    METHODOLOGY AND PRINCIPLE FINDINGS: A literature search was performed in Scopus, PubMed, MEDLINE and non-indexed citations (via Ovid) by using suitable keyword combinations. Studies evaluating the performance of nucleic acid assays targeting leptospire genes in human or animal clinical samples against a reference test were included. Of the 1645 articles identified, 42 eligible studies involving 7414 samples were included in the analysis. The diagnostic performance of nucleic acid assays targeting the rrs, lipL32, secY and flaB genes was pooled and analyzed. Among the genetic markers analyzed, the secY gene showed the highest diagnostic accuracy measures, with a pooled sensitivity of 0.56 (95% CI: 0.50-0.63), a specificity of 0.98 (95% CI: 0.97-0.98), a diagnostic odds ratio of 46.16 (95% CI: 6.20-343.49), and an area under the curve of summary receiver operating characteristics curves of 0.94. Nevertheless, a high degree of heterogeneity was observed in this meta-analysis. Therefore, the present findings here should be interpreted with caution.

    CONCLUSION: The diagnostic accuracies of the studies examined for each genetic marker showed a significant heterogeneity. The secY gene exhibited higher diagnostic accuracy measures compared with other genetic markers, such as lipL32, flaB, and rrs, but the difference was not significant. Thus, these genetic markers had no significant difference in diagnostic accuracy for leptospirosis. Further research into these genetic markers is warranted.

  17. Lee PY, Wong YP, Othman S, Chee HY
    Asian Biomed (Res Rev News), 2021 Aug;15(4):183-189.
    PMID: 37551329 DOI: 10.2478/abm-2021-0023
    BACKGROUND: Loop-mediated isothermal amplification (LAMP) is one of the most promising tools for rapidly detecting Leptospira spp. However, LAMP is hampered by cold storage to maintain the enzymatic activity of Bst DNA polymerase.

    OBJECTIVE: To overcome the drawback of cold storage requirement for LAMP reagents we modified the reagents by adding sucrose as stabilizer. We then sought to determine the stability at room temperature of the premixed LAMP reagents containing sucrose.

    METHOD: Premixed LAMP reagents with sucrose and without sucrose were prepared. The prepared mixtures were stored at room temperature for up to 60 days, and were subjected to LAMP reactions at various intervals using rat kidney samples to detect leptospiral DNA.

    RESULTS: The premixed LAMP reagents with sucrose remained stable for 45 days while sucrose-free premixed LAMP reagents showed no amplification from day 1 of storage at room temperature up to day 14.

    CONCLUSION: The LAMP reagent system can be refined by using sucrose as stabilizer, thus allowing their storage at room temperature without the need for cold storage. The modified method enables greater feasibility of LAMP for field surveillance and epidemiology in resource-limited settings.

  18. Low CF, Shamsudin MN, Abdullah M, Chee HY, Aliyu-Paiko M
    J Fish Dis, 2015 Jan;38(1):17-25.
    PMID: 24397626 DOI: 10.1111/jfd.12195
    The mechanisms through which brown-marbled grouper accomplishes resistance to infection, particularly against Vibrios, are not yet fully understood. In this study, brown-marbled grouper fingerlings were experimentally infected with Vibrio parahaemolyticus, to identify disease resistance grouper, and the serum proteome profiles were compared between resistant and susceptible candidates, via two-dimensional gel electrophoresis (2-DE). The results showed that putative parvalbumin beta-2 subunit I, alpha-2-macroglobulin, nattectin and immunoglobulin light chain proteins were among proteins that significantly overexpressed in the resistant fish as compared to the susceptible group of fish, whereas apolipoprotein E and immunoglobulin light chain proteins were observed to be differentially overexpressed in the susceptible fish. Further analysis by peptide sequencing revealed that the immunoglobulin light chain proteins identified in the resistant and susceptible groups differed in amino acid composition. Taken together, the results demonstrated for the first time that putative parvalbumin beta-2 subunit I, alpha-2-macroglobulin, nattectin and immunoglobulin light chain are among important proteins participating to effect disease resistance mechanism in fish and were overexpressed to function collectively to resist V. parahaemolyticus infection. Most of these molecules are mediators of immune response.
  19. Low CF, Shamsudin MN, Chee HY, Aliyu-Paiko M, Idrus ES
    J Fish Dis, 2014 Aug;37(8):693-701.
    PMID: 24304156 DOI: 10.1111/jfd.12153
    The gram-negative bacterium, Vibrio alginolyticus, has frequently been identified as the pathogen responsible for the infectious disease called vibriosis. This disease is one of the major challenges facing brown-marbled grouper aquaculture, causing fish farmers globally to suffer substantial economic losses. The objective of this study was to investigate the proteins involved in the immune response of brown-marbled grouper fingerlings during their initial encounter with pathogenic organisms. To achieve this objective, a challenge experiment was performed, in which healthy brown-marbled grouper fingerlings were divided into two groups. Fish in the treated group were subjected to intraperitoneal injection with an infectious dose of V. alginolyticus suspended in phosphate-buffered saline (PBS), and those in the control group were injected with an equal volume of PBS. Blood samples were collected from a replicate number of fish from both groups at 4 h post-challenge and analysed for immune response-related serum proteins via two-dimensional gel electrophoresis. The results showed that 14 protein spots were altered between the treated and control groups; these protein spots were further analysed to determine the identity of each protein via MALDI-TOF/TOF. Among the altered proteins, three were clearly overexpressed in the treated group compared with the control; these were identified as putative apolipoprotein A-I, natural killer cell enhancement factor and lysozyme g. Based on these results, these three highly expressed proteins participate in immune response-related reactions during the initial exposure (4 h) of brown-marbled grouper fingerling to V. alginolyticus infection.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links