Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Fornace KM, Alexander N, Abidin TR, Brock PM, Chua TH, Vythilingam I, et al.
    Elife, 2019 10 22;8.
    PMID: 31638575 DOI: 10.7554/eLife.47602
    Human movement into insect vector and wildlife reservoir habitats determines zoonotic disease risks; however, few data are available to quantify the impact of land use on pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological methods to develop fine-scale models of human space use relative to land cover to assess exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with spatially explicit models of mosquito biting rates, we demonstrate the role of individual heterogeneities in local space use in disease exposure. At a community level, our data indicate that areas close to both secondary forest and houses have the highest probability of human P. knowlesi exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting rates in forests, incorporating human movement and space use into exposure estimates illustrates the importance of intensified interactions between pathogens, insect vectors and people around habitat edges.
  2. Stanis CS, Song BK, Chua TH, Lau YL, Jelip J
    Turk J Med Sci, 2016 Jan 05;46(1):207-18.
    PMID: 27511356 DOI: 10.3906/sag-1411-114
    BACKGROUND/AIM: Malaria is a major public health problem, especially in the Southeast Asia region, caused by 5 species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi). The aim of this study was to compare parasite species identification methods using the new multiplex polymerase chain reaction (PCR) against nested PCR and microscopy.

    MATERIALS AND METHODS: Blood samples on filter papers were subject to conventional PCR methods using primers designed by us in multiplex PCR and previously designed primers of nested PCR. Both sets of results were compared with microscopic identification.

    RESULTS: Of the 129 samples identified as malaria-positive by microscopy, 15 samples were positive for P. falciparum, 14 for P. vivax, 6 for P. knowlesi, 72 for P. malariae, and 2 for mixed infection of P. falciparum/P. malariae. Both multiplex and nested PCR identified 12 P. falciparum single infections. For P. vivax, 9 were identified by multiplex and 12 by nested PCR. For 72 P. malariae cases, multiplex PCR identified 58 as P. knowlesi and 10 as P. malariae compared to nested PCR, which identified 59 as P. knowlesi and 7 as P. malariae.

    CONCLUSION: Multiplex PCR could be used as alternative molecular diagnosis for the identification of all Plasmodium species as it requires a shorter time to screen a large number of samples.

  3. Lau SM, Vythilingam I, Doss JI, Sekaran SD, Chua TH, Wan Sulaiman WY, et al.
    Trop Med Int Health, 2015 Oct;20(10):1271-80.
    PMID: 26094839 DOI: 10.1111/tmi.12555
    To determine the effectiveness of using sticky traps and the NS1 dengue antigen kit for the surveillance of Aedes mosquitoes for dengue control.
  4. Arbaoui AA, Chua TH
    Trop Biomed, 2014 Mar;31(1):134-42.
    PMID: 24862053 MyJurnal
    Since a safe and effective mass vaccination program against dengue fever is not presently available, a good way to prevent and control dengue outbreaks depends mainly on controlling the mosquito vectors. Aedes aegypti mosquito populations can be monitored and reduced by using ovitraps baited with organic infusions. A series of laboratory experiments were conducted which demonstrated that the bacteria in bamboo leaf infusion produce volatile attractants and contact chemical stimulants attractive to the female mosquitoes. The results showed that the female mosquitoes laid most of their eggs (59.9 ± 8.1 vs 2.9 ± 2.8 eggs, P<0.001) in bamboo leaf infusions when compared to distilled water. When the fresh infusion was filtered with a 0.45 μm filter membrane, the female mosquitoes laid significantly more eggs (64.1 ± 6.6 vs 4.9 ± 2.6 eggs, P<0.001) in unfiltered infusion. However when a 0.8 μm filter membrane was used, the female laid significantly more eggs (62.0 ± 4.3 vs 10.1 ± 7.8 eggs, P<0.001) in filtrate compared to a solution containing the residue. We also found that a mixture of bacteria isolated from bamboo leaf infusion serve as potent oviposition stimulants for gravid Aedes mosquitoes. Aedes aegypti laid significantly more eggs (63.3 ± 6.5 vs 3.1 ± 2.4 eggs, P<0.001) in bacteria suspension compared to sterile R2A medium. Our results suggest microbial activity has a role in the production of odorants that mediate the oviposition response of gravid mosquitoes.
  5. Chua TH
    Trop Biomed, 2012 Mar;29(1):121-8.
    PMID: 22543612 MyJurnal
    According to the report of the Intergovernmental Panel on Climate Change (IPCC), Malaysia will experience an increase of 3-5°C in the future. As the development of the malaria parasite, Plasmodium falciparum, is sensitive to temperature, we investigated, using computer models, the effect of increase of 3º and 5ºC on the possible changes in the epidemiology of malaria transmission of P. falciparum in Malaysia. Four environmentally different locations were selected: Kuala Lumpur (KL), Cameron Highlands (CH), Kota Kinabalu (KK) and Kinabalu Park (KP). The extrinsic incubation period (EIP) was estimated using hourly temperatures and the mean daily temperatures. The EIP values estimated using the mean daily temperature were lower than those computed from hourly temperatures in warmer areas (KL, KK), but higher in the cooler areas (CH, KP). The computer simulations also indicated that the EIP will be decreased if the temperature was raised by 3º or 5ºC, with the effect more pronounced for the greater temperature increase, and for the cooler places. The vector cohort that is still alive at a time to transmit malaria (s(EIP)) also increased when the temperature was raised, with the increase more pronounced in the cooler areas. This study indicates an increase in temperature will have more significant effect in shortening the EIP in a cooler place (eg CH, KP), resulting in a greater s(EIP), and consequently increasing the transmission intensity and malaria risk. A temperature increase arising from the global climate change will likely affect the epidemiology of malaria in Malaysia, especially in the cooler areas.
  6. Aung TS, Gintarong T, Balingi DB, Emran A, Thein TT, Chua TH
    Trop Biomed, 2020 Mar 01;37(1):58-65.
    PMID: 33612718
    An outbreak of dengue in Kudat, northern Sabah in 2016-2017 provided an opportunity to investigate the circulating serotypes of dengue viruses of cases at Hospital Kudat. Between September 2016 and December 2017, a total of 156 dengue positive sera (tested positive by either NS1 antigen, or IgM and IgG antibody rapid test) were collected from dengue patients who had acute fever and showed signs and symptoms suggestive of dengue. RNA was extracted from the sera using QIAamp RNA Blood Mini Kit, and molecular amplification was performed using one-step RT-PCR kit, followed by nested PCR using HotStart Taq master mix kit with the primers of the dengue C-prM gene. There were 81 (52%) male and 75 (48%) female cases. The age group with the highest number of cases was the 10-19 years old, while the youngest infected was 8 months old and the oldest was 83 years old. RT-PCR results showed 88 sera dengue positive, 48 infected with a single serotype while another 40 with multiple serotypes. All four DENV serotypes were co-circulating during the outbreak period and DENV-1 was predominant. Molecular analysis also indicated 69.2%, 50.0%, 51.9% and 48.9% respectively of the NS1, IgM, IgG and IgM and IgG positive sera were RT-PCR positive for dengue. High number of cases were seen in December 2016, February and May 2017. The dengue outbreak might be related to switching of predominant serotype from DENV 4 to DENV 1.
  7. Suleiman M, Muhammad J, Jelip J, William T, Chua TH
    PMID: 29644840
    The horseshoe crab (Carcinoscorpius rotundicauda) is consumed by those
    residing near the coastal areas of Kota Marudu District in Malaysia, as it is considered
    a delicacy. During June to August, 2011 thirty cases of tetrodotoxin poisoning
    were reported from Kota Marudu District following ingestion of horseshoe
    crabs caught in Kota Marudu Bay. The purpose of this study is to describe this
    case series in order to determine risk factors to prevent further outbreaks. There
    were six confirmed and 24 probable cases of tetrodotoxin poisoning identified in
    the study area during the study period as diagnosed by clinical presentation and
    laboratory findings. Symptoms included dizziness (80%), circumoral and lingual
    numbness (80%), hand and feet numbness (63.3%), nausea and vomiting (30%)
    and weakness and difficulty in breathing (26.6%). Three cases (10%) died while 27
    cases recovered. Forty-seven percent of the cases had onset of symptoms within
    30 minutes of ingestion and 14% 31-60 minutes after ingestion of horseshoe crab
    meat. Urine samples were collected from the cases, while horseshoe crabs, cockles
    and sea water from the epidemic area were also taken for analysis. Tetrodotoxin
    was detected in the urine of six cases; the highest concentrations recorded were
    among the three cases who died. High tetrodotoxin concentrations were found
    in the hepatic cecum and eggs of the tested horseshoe crabs. Dinoflagellates were
    not detected in the sea water or cockle samples. Intensive health education was
    initiated quickly to stop other members of the Marudu Bay community from
    consuming the horseshoe crabs. This is the first documented epidemic of tetrodotoxin
    poisoning in Sabah.
  8. Fornace KM, Brock PM, Abidin TR, Grignard L, Herman LS, Chua TH, et al.
    Lancet Planet Health, 2019 04;3(4):e179-e186.
    PMID: 31029229 DOI: 10.1016/S2542-5196(19)30045-2
    BACKGROUND: Land use changes disrupt ecosystems, altering the transmission of vector-borne diseases. These changes have been associated with increasing incidence of zoonotic malaria caused by Plasmodium knowlesi; however, the population-level distributions of infection and exposure remain unknown. We aimed to measure prevalence of serological exposure to P knowlesi and assess associated risk factors.

    METHODS: We did an environmentally stratified, population-based, cross-sectional survey across households in the Kudat, Kota Marudu, Pitas, and Ranau districts in northern Sabah, Malaysia, encompassing a range of ecologies. Using blood samples, the transmission intensity of P knowlesi and other malaria species was measured by specific antibody prevalence and infection detected using molecular methods. Proportions and configurations of land types were extracted from maps derived from satellite images; a data-mining approach was used to select variables. A Bayesian hierarchical model for P knowlesi seropositivity was developed, incorporating questionnaire data about individual and household-level risk factors with selected landscape factors.

    FINDINGS: Between Sept 17, 2015, and Dec 12, 2015, 10 100 individuals with a median age of 25 years (range 3 months to 105 years) were sampled from 2849 households in 180 villages. 5·1% (95% CI 4·8-5·4) were seropositive for P knowlesi, and marked historical decreases were observed in the transmission of Plasmodium falciparum and Plasmodium vivax. Nine Plasmodium spp infections were detected. Age, male sex, contact with macaques, forest use, and raised house construction were positively associated with P knowlesi exposure, whereas residing at higher geographical elevations and use of insecticide were protective. Agricultural and forest variables, such as proportions and fragmentation of land cover types, predicted exposure at different spatial scales from households.

    INTERPRETATION: Although few infections were detected, P knowlesi exposure was observed in all demographic groups and was associated with occupational factors. Results suggest that agricultural expansion and forest fragmentation affect P knowlesi exposure, supporting linkages between land use change and P knowlesi transmission.

    FUNDING: UK Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council.

  9. Fornace KM, Zorello Laporta G, Vythilingham I, Chua TH, Ahmed K, Jeyaprakasam NK, et al.
    Lancet Infect Dis, 2023 Dec;23(12):e520-e532.
    PMID: 37454671 DOI: 10.1016/S1473-3099(23)00298-0
    Simian malaria from wild non-human primate populations is increasingly recognised as a public health threat and is now the main cause of human malaria in Malaysia and some regions of Brazil. In 2022, Malaysia became the first country not to achieve malaria elimination due to zoonotic simian malaria. We review the global distribution and drivers of simian malaria and identify priorities for diagnosis, treatment, surveillance, and control. Environmental change is driving closer interactions between humans and wildlife, with malaria parasites from non-human primates spilling over into human populations and human malaria parasites spilling back into wild non-human primate populations. These complex transmission cycles require new molecular and epidemiological approaches to track parasite spread. Current methods of malaria control are ineffective, with wildlife reservoirs and primarily outdoor-biting mosquito vectors urgently requiring the development of novel control strategies. Without these, simian malaria has the potential to undermine malaria elimination globally.
  10. Grignard L, Shah S, Chua TH, William T, Drakeley CJ, Fornace KM
    J Infect Dis, 2019 11 06;220(12):1946-1949.
    PMID: 31418017 DOI: 10.1093/infdis/jiz397
    To determine the presence and species composition of malaria infections, we screened a subset of samples collected during a cross-sectional survey in Northern Sabah, Malaysia using highly sensitive molecular techniques. Results identified 54 asymptomatic submicroscopic malaria infections, including a large cluster of Plasmodium falciparum and 3 P. knowlesi infections. We additionally identified 2 monoinfections with the zoonotic malaria Plasmodium cynomolgi, both in individuals reporting no history of forest activities or contact with macaques. Results highlight the need for improved surveillance strategies to detect these infections and determine public health impacts.
  11. Suleiman M, Jelip J, Rundi C, Chua TH
    Am J Trop Med Hyg, 2017 Dec;97(6):1731-1736.
    PMID: 29016314 DOI: 10.4269/ajtmh.17-0589
    During the months of January-February and May-June 2013 coinciding with the red tide occurrence in Kota Kinabalu, Sabah, Malaysia, six episodes involving 58 cases of paralytic shellfish poisoning (PSP) or saxitoxin (STX) poisoning and resulting in four deaths were reported. Many of them were intoxicated from consuming shellfish purchased from the markets, whereas others were intoxicated from eating shellfish collected from the beach. Levels of STX in shellfish collected from the affected areas were high (mean 2,920 ± 780 and 360 ± 140 µg STX equivalents/100 g shellfish meat respectively for the two periods). The count of toxic dinoflagellates (Pyrodinium bahamense var compressum) of the sea water sampled around the coast was also high (mean 34,200 ± 10,300 cells/L). Species of shellfish containing high levels of STX were Atrina fragilis, Perna viridis, and Crassostrea belcheri. The age of victims varied from 9 to 67 years. Symptoms presented were typical of PSP, such as dizziness, numbness, vomiting, and difficulty in breathing. Recommended steps to prevent or reduce PSP in future red tide season include better monitoring of red tide occurrence, regular sampling of shellfish for determination of STX level, wider dissemination of information on the danger of eating contaminated shellfish among the communities, fishermen, and fishmongers.
  12. Hawkes FM, Manin BO, Cooper A, Daim S, R H, Jelip J, et al.
    Sci Rep, 2019 09 16;9(1):13312.
    PMID: 31527622 DOI: 10.1038/s41598-019-49842-2
    In lowland areas of Malaysia, Plasmodium knowlesi infection is associated with land use change and high proportions of the vector Anopheles balabacensis. We conducted a 15-month study in two Malaysian villages to determine the effect of habitat on vector populations in understudied high-altitude, high-incidence districts. Anopheles mosquitoes were sampled in human settlements, plantations and forest edges, and screened for Plasmodium species by PCR. We report the first An. donaldi positive for P. knowlesi. This potential vector was associated with habitat fragmentation measured as disturbed forest edge:area ratio, while An. balabacensis was not, indicating fragmented land use could favour An. donaldi. Anopheline species richness and diversity decreased from forest edge, to plantation, to human settlement. Greater numbers of An. balabacensis and An. donaldi were found in forest edges compared to human settlements, suggesting exposure to vectors and associated zoonoses may be greater for people entering this habitat.
  13. Hawkes FM, Manin BO, Cooper A, Daim S, R H, Jelip J, et al.
    Sci Rep, 2019 Nov 20;9(1):17510.
    PMID: 31745193 DOI: 10.1038/s41598-019-53744-8
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
  14. Selvarajoo S, Liew JWK, Chua TH, Tan W, Zaki RA, Ngui R, et al.
    Sci Rep, 2022 01 12;12(1):571.
    PMID: 35022501 DOI: 10.1038/s41598-021-04643-4
    Dengue remains a major public threat and existing dengue control/surveillance programs lack sensitivity and proactivity. More efficient methods are needed. A cluster randomized controlled trial was conducted for 18 months to determine the efficacy of using a combination of gravid oviposition sticky (GOS) traps and dengue non-structural 1 (NS1) antigen for early surveillance of dengue among Aedes mosquito. Eight residential apartments were randomly assigned into intervention and control groups. GOS traps were placed at the intervention apartments weekly to trap Aedes mosquitoes and these tested for dengue NS1 antigen. When dengue-positive pool was detected, the community were notified and advised to execute protective measures. Fewer dengue cases were recorded in the intervention group than the control. Detection of NS1-positive mosquitoes was significantly associated with GOS Aedes index (rs = 0.68, P 
  15. Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, et al.
    Sci Rep, 2021 Jun 03;11(1):11810.
    PMID: 34083582 DOI: 10.1038/s41598-021-90893-1
    Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.
  16. Byrne I, William T, Chua TH, Patterson C, Hall T, Tan M, et al.
    Sci Rep, 2023 Aug 10;13(1):12998.
    PMID: 37563178 DOI: 10.1038/s41598-023-39670-w
    Malaysia has reported no indigenous cases of P. falciparum and P. vivax for over 3 years. When transmission reaches such low levels, it is important to understand the individuals and locations where exposure risks are high, as they may be at greater risk in the case of a resurgence of transmission. Serology is a useful tool in low transmission settings, providing insight into exposure over longer durations than PCR or RDT. We ran blood samples from a 2015 population-based survey in northern Sabah, Malaysian Borneo on a multiplex bead assay. Using supervised machine learning methods, we characterised recent and historic exposure to Plasmodium falciparum and P. vivax and found recent exposure to P. falciparum to be very low, with exposure to both species increasing with age. We performed a risk-factor assessment on environmental, behavioural, demographic and household factors, and identified forest activity and longer travel times to healthcare as common risk-factors for exposure to P. falciparum and P. vivax. In addition, we used remote-sensing derived data and geostatistical models to assess environmental and spatial associations with exposure. We created predictive maps of exposure to recent P. falciparum in the study area and showed 3 clear foci of exposure. This study provides useful insight into the environmental, spatial and demographic risk factors for P. falciparum and P. vivax at a period of low transmission in Malaysian Borneo. The findings would be valuable in the case of resurgence of human malarias in the region.
  17. Manin BO, Drakeley CJ, Chua TH
    PLoS One, 2018;13(8):e0202905.
    PMID: 30138386 DOI: 10.1371/journal.pone.0202905
    Anopheles balabacensis, the primary vector of Plasmodium knowlesi in Sabah, Malaysia, is both zoophilic and anthropophilic, feeding on macaques as well as humans. It is the dominant Anopheles species found in Kudat Division where it is responsible for all the cases of P. knowlesi. However there is a paucity of basic biological and ecological information on this vector. We investigated the genetic variation of this species using the sequences of cox1 (1,383 bp) and cox2 (685 bp) to gain an insight into the population genetics and inter-population gene flow in Sabah. A total of 71 An. balabacensis were collected from seven districts constituting 14 subpopulations. A total of 17, 10 and 25 haplotypes were detected in the subpopulations respectively using the cox1, cox2 and the combined sequence. Some of the haplotypes were common among the subpopulations due to gene flow occurring between them. AMOVA showed that the genetic variation was high within subpopulations as compared to between subpopulations. Mantel test results showed that the variation between subpopulations was not due to the geographical distance between them. Furthermore, Tajima's D and Fu's Fs tests showed that An. balabacensis in Sabah is experiencing population expansion and growth. High gene flow between the subpopulations was indicated by the low genetic distance and high gene diversity in the cox1, cox2 and the combined sequence. However the population at Lipasu Lama appeared to be isolated possibly due to its higher altitude at 873 m above sea level.
  18. Lim-Leroy A, Chua TH
    PLoS One, 2020;15(9):e0239680.
    PMID: 32986746 DOI: 10.1371/journal.pone.0239680
    Geohelminthiasis is a worldwide problem, especially in low-income countries. Children from rural areas and those living in poverty, lacking basic health amenities and having poor environmental sanitation are likely to be affected. Adverse effects such as anemia, protein malnutrition, colitis are common which can affect both the children's physical and mental growing development. A cross-sectional study on geohelminthiasis was conducted among children from 238 households in 13 villages in Kota Marudu of northern Sabah, East Malaysia. The study involved interviewing villagers using questionnaires to collect demographic and socio-economic data, getting faecal samples from the children, collecting soil samples and identifying parasite eggs with microscopy and molecular methods. A total of 407 children (6 months-17 years old) enrolled in the study. Geohelminthiasis was detected in the faecal samples of children from 54% (7/13) of the villages with mean prevalence of infection per village of 9.0% (0%-34.9%). On a household basis, 18% (43/238) of the households sampled had infected children, with mean prevalence rate per household of 11% (0%-43%). The prevalence was for Ascaris lumbricoides: 9.6% (39/407), Trichuris trichiura: 2.7% (11/407) and hookworms (Necator americanus and Ancylostoma sp.): 2.7% (11/407). The overall mean infection rate of the children examined was 14.3%. Significantly higher prevalence was recorded for the children of mothers who did not have any formal education (p = 0.003); household income of less than USD119 (RM500) (p<0.001); children from homes without proper sanitation facilities (p<0.001); children who usually go about barefoot (p<0.001) and not washing feet before entering the house (p = 0.017). Soil samples were found to have geohelminth eggs or larvae which could be due to unhygienic sanitation practices. This study shows the geohelminthiasis is prevalent in the villages, and the risk factors are lack of maternal education, low income, poor sanitation facilities and irregular deworming practice. Expanding deworming coverage in the study region may help reduce the worm infections in these communities, so that the mental and physical development of the children would not be affected by geohelminthiasis. The data on the prevalence of geohelminthiasis in this study would contribute to better public health monitoring and operation to reduce the infection in rural areas.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links