Displaying all 6 publications

Abstract:
Sort:
  1. Alardhi SM, Fiyadh SS, Salman AD, Adelikhah M
    Heliyon, 2023 Jan;9(1):e12888.
    PMID: 36699265 DOI: 10.1016/j.heliyon.2023.e12888
    In this study, methyl orange (MO) dye removal by adsorption utilizing activated carbon made from date seeds (DPAC) was modeled using an artificial neural network (ANN) technique. Instrumental investigations such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analysis were used to assess the physicochemical parameters of adsorbent. By changing operational parameters including adsorbent dosage (0.01-0.03 g), solution pH 3-8, initial dye concentration (5-20 mg/L), and contact time (2-60 min), the viability of date seeds for the adsorptive removal of methyl orange dye from aqueous solution was assessed in a batch procedure. The system followed the pseudo 2nd order kinetic model for DPAC adsorbent, according to the kinetic study (R2 = 0.9973). The mean square error (MSE), relative root mean square error (RRMSE), root mean square error (RMSE), mean absolute percentage error (MAPE), relative error (RE), and correlation coefficient (R2) were used to measure the ANN model performance. The maximum RE was 8.24% for the ANN model. Two isotherm models, Langmuir and Freundlich, were studied to fit the equilibrium data. Compared with the Freundlich isotherm model (R2 = 0.72), the Langmuir model functioned better as an adsorption isotherm with R2 of 0.9902. Thus, this study demonstrates that the dye removal process can be predicted using an ANN technique, and it also suggests that adsorption onto DPAC may be employed as a main treatment for dye removal from wastewater.
  2. Fiyadh SS, AlSaadi MA, AlOmar MK, Fayaed SS, Hama AR, Bee S, et al.
    Water Sci Technol, 2017 Nov;76(9-10):2413-2426.
    PMID: 29144299 DOI: 10.2166/wst.2017.393
    The main challenge in the lead removal simulation is the behaviour of non-linearity relationships between the process parameters. The conventional modelling technique usually deals with this problem by a linear method. The substitute modelling technique is an artificial neural network (ANN) system, and it is selected to reflect the non-linearity in the interaction among the variables in the function. Herein, synthesized deep eutectic solvents were used as a functionalized agent with carbon nanotubes as adsorbents of Pb2+. Different parameters were used in the adsorption study including pH (2.7 to 7), adsorbent dosage (5 to 20 mg), contact time (3 to 900 min) and Pb2+ initial concentration (3 to 60 mg/l). The number of experimental trials to feed and train the system was 158 runs conveyed in laboratory scale. Two ANN types were designed in this work, the feed-forward back-propagation and layer recurrent; both methods are compared based on their predictive proficiency in terms of the mean square error (MSE), root mean square error, relative root mean square error, mean absolute percentage error and determination coefficient (R2) based on the testing dataset. The ANN model of lead removal was subjected to accuracy determination and the results showed R2 of 0.9956 with MSE of 1.66 × 10-4. The maximum relative error is 14.93% for the feed-forward back-propagation neural network model.
  3. Fiyadh SS, AlOmar MK, Binti Jaafar WZ, AlSaadi MA, Fayaed SS, Binti Koting S, et al.
    Int J Mol Sci, 2019 Aug 28;20(17).
    PMID: 31466219 DOI: 10.3390/ijms20174206
    Multi-walled carbon nanotubes (CNTs) functionalized with a deep eutectic solvent (DES) were utilized to remove mercury ions from water. An artificial neural network (ANN) technique was used for modelling the functionalized CNTs adsorption capacity. The amount of adsorbent dosage, contact time, mercury ions concentration and pH were varied, and the effect of parameters on the functionalized CNT adsorption capacity is observed. The (NARX) network, (FFNN) network and layer recurrent (LR) neural network were used. The model performance was compared using different indicators, including the root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute percentage error (MAPE), mean square error (MSE), correlation coefficient (R2) and relative error (RE). Three kinetic models were applied to the experimental and predicted data; the pseudo second-order model was the best at describing the data. The maximum RE, R2 and MSE were 9.79%, 0.9701 and 1.15 × 10-3, respectively, for the NARX model; 15.02%, 0.9304 and 2.2 × 10-3 for the LR model; and 16.4%, 0.9313 and 2.27 × 10-3 for the FFNN model. The NARX model accurately predicted the adsorption capacity with better performance than the FFNN and LR models.
  4. Ibrahim RK, Fiyadh SS, AlSaadi MA, Hin LS, Mohd NS, Ibrahim S, et al.
    Molecules, 2020 Mar 26;25(7).
    PMID: 32225061 DOI: 10.3390/molecules25071511
    In the recent decade, deep eutectic solvents (DESs) have occupied a strategic place in green chemistry research. This paper discusses the application of DESs as functionalization agents for multi-walled carbon nanotubes (CNTs) to produce novel adsorbents for the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solution. Also, it focuses on the application of the feedforward backpropagation neural network (FBPNN) technique to predict the adsorption capacity of DES-functionalized CNTs. The optimum adsorption conditions that are required for the maximum removal of 2,4-DCP were determined by studying the impact of the operational parameters (i.e., the solution pH, adsorbent dosage, and contact time) on the adsorption capacity of the produced adsorbents. Two kinetic models were applied to describe the adsorption rate and mechanism. Based on the correlation coefficient (R2) value, the adsorption kinetic data were well defined by the pseudo second-order model. The precision and efficiency of the FBPNN model was approved by calculating four statistical indicators, with the smallest value of the mean square error being 5.01 × 10-5. Moreover, further accuracy checking was implemented through the sensitivity study of the experimental parameters. The competence of the model for prediction of 2,4-DCP removal was confirmed with an R2 of 0.99.
  5. Fiyadh SS, Alardhi SM, Al Omar M, Aljumaily MM, Al Saadi MA, Fayaed SS, et al.
    Heliyon, 2023 Apr;9(4):e15455.
    PMID: 37128319 DOI: 10.1016/j.heliyon.2023.e15455
    Water is the most necessary and significant element for all life on earth. Unfortunately, the quality of the water resources is constantly declining as a result of population development, industry, and civilization progress. Due to their extreme toxicity, heavy metals removal from water has drawn researchers' attention. A lot of scientific applications use artificial neural networks (ANNs) because of their excellent ability to map nonlinear relationships. ANNs shown excellent modelling capabilities for the water treatment remediation. The adsorption process uses a variety of variables, making the interaction between them nonlinear. Selecting the best technique can produce excellent results; the adsorption approach for removing heavy metals is highly effective. Different studies show that the ANNs modelling approach can accurately forecast the adsorbed heavy metals and other contaminants in order to remove them.
  6. Fiyadh SS, Alardhi SM, Al Omar M, Aljumaily MM, Al Saadi MA, Fayaed SS, et al.
    Heliyon, 2023 Jul;9(7):e17675.
    PMID: 37539279 DOI: 10.1016/j.heliyon.2023.e17675
    [This corrects the article DOI: 10.1016/j.heliyon.2023.e15455.].
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links