This study assessed the environmental impacts of the formulation of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) conductive membranes and of the process operating parameters of electrically-enhanced palm oil mill effluent (POME) filtration. Two different analyses approaches were employed, cradle-to-gate approach for conductive membrane production and gate-to-gate approach for the POME filtration process. The parameters in conductive-membrane formulation (e.g. the weight ratio of carbon nanomaterials, and concentration of GO/MWCNT nanohybrids) and process operating parameters (e.g. electric field strength and electricity operating mode) were investigated. The findings herein are twofold. Firstly, for the fabrication of GO/MWCNT conductive membranes, the best weight ratio of GO:MWCNTs was found to be 1:9, given its superior membrane electrical conductivity with lower environmental impacts by 8.51% compared to pristine MWCNTs. The most suitable concentration of carbon nanomaterials was found to be 5 wt%, given its lowest impacts on resource depletion, human health, and ecosystems. Secondly, for the electrically-enhanced POME filtration, the optimum process operating parameters were found to be the application of an electric field of 300 V/cm in the continuous mode, given its lower environmental impacts (22.99%-89.30%) secondary to its requirement of the least electricity to produce permeate. The present study has established not only the optimized conditions in membrane formulation but also the operating parameters of electrically-enhanced filtration; such findings enable the use of cleaner production and sustainable approach to minimize fouling for industrial applications, whilst maintaining excellent efficiency.
A novel approach in the design of a safe, high performance hemodialysis membrane is of great demand. Despite many advantages, the employment of prodigious nanomaterials in hemodialysis membrane is often restricted by their potential threat to health. Hence, this work focusses on designing a biocompatible polyethersulfone (PES) hemodialysis membrane embedded with poly (citric acid)-grafted-multi walled carbon nanotubes (PCA-g-MWCNTs). Two important elements which could assure the safety of the nanocomposite membrane, i.e. (i) dispersion stability and (ii) leaching of MWCNTs were observed. The results showed the improved dispersion stability of MWCNTs in water and organic solvent due to the enriched ratio of oxygen-rich groups which subsequently enhanced membrane separation features. It was revealed that only 0.17% of MWCNTs was leached out during the membrane fabrication process (phase inversion) while no leaching was detected during permeation. In terms of biocompatibility, PES/PCA-g-MWCNT nanocomposite membrane exhibited lesser C3 and C5 activation (189.13 and 5.29ng/mL) and proteins adsorption (bovine serum albumin=4.5μg/cm2, fibrinogen=15.95μg/cm2) as compared to the neat PES membrane, while keeping a normal blood coagulation time. Hence, the PES/PCA-g-MWCNT nanocomposite membrane is proven to have the prospect of becoming a safe and high performance hemodialysis membrane.
This study investigated the interactions between volatile and char during biomass pyrolysis at 400 °C, employing a β-5 lignin dimer and amino-modified graphitized carbon nanotube (CNT-NH2) as their models, respectively. The results demonstrated that both -NH2 and its carrier (CNT) facilitated the conversion of the β-5 dimer, which significantly increased from 9.7% (blank run), to 61.6% (with CNT), and to 96.6% (with CNT-NH2). CNT mainly favored the breakage of C-O bond in the feedstock to produce dimers with a yield of 55.5%, while CNT-NH2 promoted the cleavage of both C-O and C-C bonds to yield monomers with a yield up to 63.4%. Such significant changes in the pyrolysis behaviors of the β-5 lignin dimer after the introduction of CNT-NH2 were considered to be mainly caused by hydrogen-bond formations between -NH2 and the dimeric feedstock/products, in addition to the π-π stacking between CNT and aromatic rings.
Carbon nanomaterials, due to their catalytic activity and high surface area, have potential as cell immobilization supports to increase the production of xylanase. Recombinant Kluyveromyces lactis used for xylanase production was integrated into a polymeric gel network with carbon nanomaterials. Carbon nanomaterials were pretreated before cell immobilization with hydrochloric acid (HCl) treatment and glutaraldehyde (GA) crosslinking, which contributes to cell immobilization performance. Carbon nanotubes (CNTs) and graphene oxide (GO) were further screened using a Plackett-Burman experimental design. Cell loading and agar concentration were the most important factors in xylanase production with low cell leakage. Under optimized conditions, xylanase production was increased by more than 400% compared to free cells. Immobilized cell material containing such high cell densities may exhibit new and unexplored beneficial properties because the cells comprise a large fraction of the component. The use of carbon nanomaterials as a cell immobilization support along with the entrapment method successfully enhances the production of xylanase, providing a new route to improved bioprocessing, particularly for the production of enzymes. KEY POINTS: • Carbon nanomaterials (CNTs, GO) have potential as cell immobilization supports. • Entrapment in a polymeric gel network provides space for xylanase production. • Plackett-Burman design screen for the most important factor for cell immobilization.
The experimental determination of thermophysical properties of nanofluid (NF) is time-consuming and costly, leading to the use of soft computing methods such as response surface methodology (RSM) and artificial neural network (ANN) to estimate these properties. The present study involves modelling and optimization of thermal conductivity and viscosity of NF, which comprises multi-walled carbon nanotubes (MWCNTs) and thermal oil. The modelling is performed to predict the thermal conductivity and viscosity of NF by using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Both models were tested and validated, which showed promising results. In addition, a detailed optimization study was conducted to investigate the optimum thermal conductivity and viscosity by varying temperature and NF weight per cent. Four case studies were explored using different objective functions based on NF application in various industries. The first case study aimed to maximize thermal conductivity (0.15985 W/m oC) while minimizing viscosity (0.03501 Pa s) obtained at 57.86 °C and 0.85 NF wt%. The goal of the second case study was to minimize thermal conductivity (0.13949 W/m °C) and viscosity (0.02526 Pa s) obtained at 55.88 °C and 0.15 NF wt%. The third case study targeted maximizing thermal conductivity (0.15797 W/m °C) and viscosity (0.07611 Pa s), and the optimum temperature and NF wt% were 30.64 °C and 0.0.85,' respectively. The last case study explored the minimum thermal conductivity (0.13735) and maximum viscosity (0.05263 Pa s) obtained at 30.64 °C and 0.15 NF wt%.
Aerospace equipages encounter potential radiation footprints through which soft errors occur in the memories onboard. Hence, robustness against radiation with reliability in memory cells is a crucial factor in aerospace electronic systems. This work proposes a novel Carbon nanotube field-effect transistor (CNTFET) in designing a robust memory cell to overcome these soft errors. Further, a petite driver circuit to test the SRAM cells which serve the purpose of precharge and sense amplifier, and has a reduction in threefold of transistor count is recommended. Additionally, analysis of robustness against radiation in varying memory cells is carried out using standard GPDK 90 nm, GPDK 45 nm, and 14 nm CNTFET. The reliability of memory cells depends on the critical charge of a device, and it is tested by striking an equivalent current charge of the cosmic ray's linear energy transfer (LET) level. Also, the robustness of the memory cell is tested against the variation in process, voltage and temperature. Though CNTFET surges with high power consumption, it exhibits better noise margin and depleted access time. GPDK 45 nm has an average of 40% increase in SNM and 93% reduction of power compared to the 14 nm CNTFET with 96% of surge in write access time. Thus, the conventional MOSFET's 45 nm node outperforms all the configurations in terms of static noise margin, power, and read delay which swaps with increased write access time.
Sole nanomaterials or nanomaterials bound to specific biomolecules have been proposed to regulate the immune system. These materials have now emerged as new tools for eliciting immune-based therapies to treat various cancers. Graphene, graphene oxide (GO) and reduced GO (rGO) are the latest nanomaterials among other carbon nanotubes that have attracted wide interest among medical industry players due to their extraordinary properties, inert-state, non-toxic and stable dispersion in a various solvent. Currently, GO and rGO are utilized in various biomedical application including cancer immunotherapy. This review will highlight studies that have been carried out in elucidating the stimulation of GO and rGO on selected innate and adaptive immune cells and their effect on cancer progression to shed some insights for researchers in the development of various GO- and rGO-based immune therapies against various cancers.
Several multi-walled carbon nanotubes supported Ni-Ce catalysts were synthesized, and their performance in carbon dioxide reforming of methane (CDRM) for syngas production was evaluated. The attachment of Ni-Ce nanoparticles to the functionalized carbon nanotube (fCNT) support was carried out using four synthesis routes, i.e., impregnation (I), sol-gel (S), co-precipitation (C), and hydrothermal (H) methods. Results indicated that synthesis method influences the properties of the NiCe/fCNT catalysts in terms of homogeneity of metal dispersion, size of crystallites, and metal-support interaction. The activity of the catalysts followed the order of NiCe/fCNT(H) > NiCe/fCNT(S) > NiCe/fCNT(C) > NiCe/fCNT(I). The NiCe/fCNT(H) catalyst exhibited the highest catalytic activity with CH4 and CO2 conversions of 92 and 96%, respectively, and resulted in syngas product with consistent H2/CO ratio of 0.91 at reaction temperature of 800 °C without notable deactivation up to 30 h of reaction. Moreover, the growth of carbon on the spent catalyst was only 2% with deposition rate of 4.08 mg/gcat·h; this was plausibly due to the well-dispersed distribution of nanoparticles on fCNT surface and abundant presence of oxygenated groups on the catalyst surface.
Meningitis is an inflammation of the protective membranes called meninges and fluid adjacent the brain and spinal cord. The inflammatory progression expands all through subarachnoid space of the brain and spinal cord and occupies the ventricles. The pathogens like bacteria, fungi, viruses, or parasites are main sources of infection causing meningitis. Bacterial meningitis is a life-threatening health problem that which needs instantaneous apprehension and treatment. Nesseria meningitidis, Streptococcus pneumoniae, and Haemophilus flu are major widespread factors causing bacterial meningitis. The conventional drug delivery approaches encounter difficulty in crossing this blood-brain barrier (BBB) and therefore are insufficient to elicit the desired pharmacological effect as required for treatment of meningitis. Therefore, application of nanoparticle-based drug delivery systems has become imperative for successful dealing with this deadly disease. The nanoparticles have ability to across BBB via four important transport mechanisms, i.e., paracellular transport, transcellular (transcytosis), endocytosis (adsorptive transcytosis), and receptor-mediated transcytosis. In this review, we reminisce distinctive symptoms of meningitis, and provide an overview of various types of bacterial meningitis, with a focus on its epidemiology, pathogenesis, and pathophysiology. This review describes conventional therapeutic approaches for treatment of meningitis and the problems encountered by them while transmitting across tight junctions of BBB. The nanotechnology approaches like functionalized polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, nanoemulsion, liposomes, transferosomes, and carbon nanotubes which have been recently evaluated for treatment or detection of bacterial meningitis have been focused. This review has also briefly summarized the recent patents and clinical status of therapeutic modalities for meningitis.
Recent progress with tailored growth and post-process sorting enables carbon nanotube (CNT) assemblies with predominantly metallic or semi-conducting concentrations. Cryogenic and microwave measurements performed here show transport dimensionality and overall order increasing with increasing metallic concentration, even in atmospheric doping conditions. By 120 GHz, the conductivity of predominantly semi-conducting assemblies grew to 400% its DC value at an increasing growth rate, while other concentrations a growth rate that tapered off. A generalized Drude model fits to the different frequency dependent behaviors and yields useful quality control parameters such as plasma frequency, mean free path, and degree of localization. As one of the first demonstrations of waveguides fabricated from this material, sorted CNTs from both as-made and post-process sources were inserted into sections of practical micro-strip. With both sources, sorted CNT micro-strip increasingly outperformed the unsorted with increasing frequency-- illustrating that sorted CNT assemblies will be important for high frequency applications.
Sandwich panel is increasingly used as lightweight energy absorbing components, which provides excellent crashworthiness performance with the three-dimensional periodic core. This paper investigates 3D-printed bio-inspired spherical-roof cubic cores with multi-walled carbon nanotubes (MWCNT) and foam-filled cores under quasi-static loading. The proposed bio-inspired spherical-roof cubic cores with 1.5 mm wall thickness were manufactured using the fused filament fabrication process, which used 70% polylactic acid (PLA) and 30% carbon fiber filament. Moreover, four groups of 3D-printed bio-inspired spherical-roof cubic cores were compared and analyzed on compressive properties and failure behavior. Experimental results were shown that foam-filled double bio-inspired spherical-roof cubic core with MWCNT was the maximum Fpeak with 1.92 kN, which provided a much more stable plateau load and better energy-absorbing characteristics. In addition, it is conducted that a double bio-inspired spherical-roof cubic core with four notches core is considered as the potential energy-absorbing core.
Carbon nanotubes (CNTs) are the most studied allotropic form of carbon. They can be used in various biomedical applications due to their novel physicochemical properties. In particular, the small size of CNTs, with a large surface area per unit volume, has a considerable impact on their toxicity. Despite of the use of CNTs in various applications, toxicity is a big problem that requires more research. In this Review, we discuss the toxicity of CNTs and the associated mechanisms. Physicochemical factors, such as metal impurities, length, size, solubilizing agents, CNTs functionalization, and agglomeration, that may lead to oxidative stress, toxic signaling pathways, and potential ways to control these mechanisms are also discussed. Moreover, with the latest mechanistic evidence described in this Review, we expect to give new insights into CNTs' toxicological effects at the molecular level and provide new clues for the mitigation of harmful effects emerging from exposure to CNTs.
Multi-walled carbon nanotubes (MWCNT)-tannase composite was investigated as an immobilized biocatalyst on the basis of its facile preparation, low cost, and excellent aqueous dispersibility. Cross-linked tannase enzymes, obtained in the presence of glutaraldehyde, were composited with MWCNT via physical adsorption. Multiple techniques were applied to investigate, and corroborate the successful adsorption of cross-linked tannase onto the MWCNT structure. Green tea infusion extract post-treatment using the composite preparation showed elevated radical scavenging activities relative to the control. Green tea infusion extract exhibited a markedly reduced EC50 value on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals following its treatment with the enzyme composite, which represents 20%-34% enhancement in its free radical scavenging capacity. Stoichiometry and number of reduced DPPH were determined and compared. The antioxidative potential of a widely consumed, health-beneficial green tea is elevated by the treatment with MWCNT-tannase composite. PRACTICAL APPLICATIONS: Cross-linked tannase enzymes were composited with pristine multi-walled carbon nanotubes via simple physical adsorption. The composite presents key advantages such as low specific volume compared to other well-known immobilization media, inert, facile enzyme composition, and ease of recovery for repeated use. The work demonstrated carbon nanotube prosthetic utility in the biotransformation of food-based health commodity sought after for its nutritional benefits. The approach is of both industrial- and agricultural importance, and is a promising and viable strategy to obtain a natural, functional food supplement for the multi-billion dollar well-being and health-related industries.
Most of the polymers and their blends, utilized in carbon capture membranes, are costly, but cellulose acetate (CA) being inexpensive is a lucrative choice. In this research, pure and mixed matrix membranes (MMMs) have been fabricated to capture carbon from natural gas. Polyethylene glycol (PEG) has been utilized in the fabrication of membranes to modify the chain flexibility of polymers. Multi-walled carbon nanotubes (MWCNTs) provide mechanical strength, thermal stability, an extra free path for CO2 molecules and augment CO2/CH4 selectivity. Membranes of pure CA, CA/PEG blend of different PEG concentrations (5%, 10%, 15%) and CA/PEG/MWCNTs blend of 10% PEG with different MWCNTs concentrations (5%, 10%, 15%) were prepared in acetone using solution casting techniques. Fabricated membranes were characterized using SEM, TGA and tensile testing. Permeation results revealed remarkable improvement in CO2/CH4 selectivity. In single gas experiments, CO2/CH4 selectivity is enhanced 8 times for pure membranes containing 10% PEG and 14 times for MMMs containing 10% MWCNTs. In mix gas experiments, the CO2/CH4 selectivity is increased 13 times for 10% PEG and 18 times for MMMs with 10% MWCNTs. Fabricated MMMs have a tensile strength of 13 MPa and are more thermally stable than CA membranes.
Herein, five N, S-co-doped carbocatalysts were prepared from different carbonaceous precursors, namely sawdust (SD), biochar (BC), carbon-nanotubes (CNTs), graphite (GP), and graphene oxide (GO) and compared. Generally, as the graphitization degree increased, the extent of N and S doping decreased, graphitic N configuration is preferred, and S configuration is unaltered. As peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) removal, the catalytic performance was in order: NS-CNTs (0.037 min-1) > NS-BC (0.032 min-1) > NS-rGO (0.024 min-1) > NS-SD (0.010 min-1) > NS-GP (0.006 min-1), with the carbonaceous properties, rather than the heteroatoms content and textural properties, being the major factor affecting the catalytic performance. NS-CNTs was found to have the supreme catalytic activity due to its remarkable conductivity (3.38 S m-1) and defective sites (ID/IG = 1.28) with high anti-interference effect against organic and inorganic matter and varying water matrixes. The PMS activation pathway was dominated by singlet oxygen (1O2) generation and electron transfer regime between CIP and PMS activated complexes. The CIP degradation intermediates were identified, and a degradation pathway is proposed. Overall, this study provides a better understanding of the importance of selecting a suitable carbonaceous platform for heteroatoms doping to produce superior PMS activator for antibiotics decontamination.
In this work, sand/zinc oxide (ZnO)/titanium dioxide (TiO2)-based photocatalysts were hybridized with graphene oxide (GO) and GO_multi-walled carbon nanotubes (MWCNTs) hybrid solution. The novel hybrid was then used in photocatalysis to degrade dye contamination. The nanocomposite photocatalyst was initially fabricated by growing ZnO nanorods (NRs) via sol-gel immersion followed by synthesizing TiO2 NRs for different times (5 and 20 h) using a hydrothermal method on sand as a substrate. Prior to the hybridization, the initial GO was synthesized using electrochemical exfoliation and further mixed with 1 wt% MWCNTs to form GO_MWCNTs hybrid solution. The synthesized GO and GO_MWCNTs hybrid solution were then incorporated onto sand/ZnO/TiO2 nanocomposite-based photocatalysts through immersion. Various sand/ZnO/TiO2-based photocatalysts were then tested for methylene blue (MB) dye degradation within 3 days. On the basis of UV-Vis measurement, the highest MB degradation was achieved by using sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs (92.60%). The high surface area and high electrical conductivity of GO_MWCNTs prolonged the lifetime of electron/hole separation and thus enhanced the photocatalytic performance.
Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.
Infectious diseases, caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, are crucial for efficient disease management, reducing morbidity and mortality rates and controlling disease spread. Traditional laboratory-based diagnostic methods face challenges such as high costs, time consumption, and a lack of trained personnel in resource-poor settings. Diagnostic biosensors have gained momentum as a potential solution, offering advantages such as low cost, high sensitivity, ease of use, and portability. Nanobiosensors are a promising tool for detecting and diagnosing infectious diseases such as coronavirus disease, human immunodeficiency virus, and hepatitis. These sensors use nanostructured carbon nanotubes, graphene, and nanoparticles to detect specific biomarkers or pathogens. They operate through mechanisms like the lateral flow test platform, where a sample containing the biomarker or pathogen is applied to a test strip. If present, the sample binds to specific recognition probes on the strip, indicating a positive result. This binding event is visualized through a colored line. This review discusses the importance, benefits, and potential of nanobiosensors in detecting infectious diseases.
Accumulation of polycyclic aromatic hydrocarbons (PAH) poses significant dangers to the environment and human health. The advancement of technology for cleaning up PAH-contaminated environments is receiving more attention. Adsorption is the preferred and most favorable approach for cleaning up sediments polluted with PAH. Due to their affordability and environmental friendliness, carbonaceous adsorbents (CAs) have been regarded as promising for adsorbing PAH. However, adsorbent qualities, environmental features, and factors may all significantly impact how well CAs remove PAH. According to growing data, CAs, most of which come from laboratory tests, may be utilized to decontaminate PAH in aquatic setups. However, their full potential has not yet been established, especially concerning field applications. This review aims to concisely summarize recent developments in CA, PAH stabilization processes, and essential field application-controlling variables. This review analysis emphasizes activated carbon, biochar, Graphene, carbon nanotubes, and carbon-nanomaterials composite since these CAs are most often utilized as adsorbents for PAH in aquatic systems.
Breast cancer (BC) is among the most frequent malignancies women face around the globe. Nanotherapeutics are constantly evolving to overcome the limitations of conventional diagnostic and therapeutic approaches. Nanotechnology-based nanocarriers have a higher entrapment efficiency, low cytotoxicity, greater stability and improved half-life than conventional therapy. Nano-drug delivery systems have improved pharmacokinetics and pharmacodynamics parameters because of nanomeric size. Currently, various nano-formulations are in preclinical and clinical settings for breast cancer, like polymeric nanoparticles, micelles, nanobodies, magnetic nanoparticles, liposomes, niosomes, gold-nanoparticles, dendrimers and carbon-nanotubes. This review highlights the recent advancement in developing nano-drug delivery systems for BC treatment. This review will open the gateway to researchers to understand the current approaches to developing nano-formulation and improving problems associated with conventional therapy.