Displaying all 13 publications

Abstract:
Sort:
  1. Ugai T, Milne RL, Ito H, Aronson KJ, Bolla MK, Chan T, et al.
    Mol Genet Genomic Med, 2019 Jun;7(6):e707.
    PMID: 31066241 DOI: 10.1002/mgg3.707
    BACKGROUND: Epidemiological studies consistently indicate that alcohol consumption is an independent risk factor for female breast cancer (BC). Although the aldehyde dehydrogenase 2 (ALDH2) polymorphism (rs671: Glu>Lys) has a strong effect on acetaldehyde metabolism, the association of rs671 with BC risk and its interaction with alcohol intake have not been fully elucidated. We conducted a pooled analysis of 14 case-control studies, with individual data on Asian ancestry women participating in the Breast Cancer Association Consortium.

    METHODS: We included 12,595 invasive BC cases and 12,884 controls for the analysis of rs671 and BC risk, and 2,849 invasive BC cases and 3,680 controls for the analysis of the gene-environment interaction between rs671 and alcohol intake for BC risk. The pooled odds ratios (OR) with 95% confidence intervals (CI) associated with rs671 and its interaction with alcohol intake for BC risk were estimated using logistic regression models.

    RESULTS: The Lys/Lys genotype of rs671 was associated with increased BC risk (OR = 1.16, 95% CI 1.03-1.30, p = 0.014). According to tumor characteristics, the Lys/Lys genotype was associated with estrogen receptor (ER)-positive BC (OR = 1.19, 95% CI 1.05-1.36, p = 0.008), progesterone receptor (PR)-positive BC (OR = 1.19, 95% CI 1.03-1.36, p = 0.015), and human epidermal growth factor receptor 2 (HER2)-negative BC (OR = 1.25, 95% CI 1.05-1.48, p = 0.012). No evidence of a gene-environment interaction was observed between rs671 and alcohol intake (p = 0.537).

    CONCLUSION: This study suggests that the Lys/Lys genotype confers susceptibility to BC risk among women of Asian ancestry, particularly for ER-positive, PR-positive, and HER2-negative tumor types.

  2. Lesseur C, Diergaarde B, Olshan AF, Wünsch-Filho V, Ness AR, Liu G, et al.
    Nat Genet, 2016 Dec;48(12):1544-1550.
    PMID: 27749845 DOI: 10.1038/ng.3685
    We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10-8), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10-9). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10-6) than in HPV-negative (OR = 0.75, P = 0.16) cancers.
  3. Machiela MJ, Hofmann JN, Carreras-Torres R, Brown KM, Johansson M, Wang Z, et al.
    Eur Urol, 2017 Nov;72(5):747-754.
    PMID: 28797570 DOI: 10.1016/j.eururo.2017.07.015
    BACKGROUND: Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings.

    OBJECTIVE: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations.

    DESIGN, SETTING, AND PARTICIPANTS: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis.

    RESULTS AND LIMITATIONS: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R2>0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13).

    CONCLUSIONS: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk.

    PATIENT SUMMARY: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma.

  4. Shi J, Zhang Y, Zheng W, Michailidou K, Ghoussaini M, Bolla MK, et al.
    Int J Cancer, 2016 Sep 15;139(6):1303-1317.
    PMID: 27087578 DOI: 10.1002/ijc.30150
    Previous genome-wide association studies among women of European ancestry identified two independent breast cancer susceptibility loci represented by single nucleotide polymorphisms (SNPs) rs13281615 and rs11780156 at 8q24. A fine-mapping study across 2.06 Mb (chr8:127,561,724-129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls within the Breast Cancer Association Consortium was conducted. Three additional independent association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% CI = 0.93-0.97, conditional p = 5.8 × 10(-6) ), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, conditional p = 1.1 × 10(-6) ) and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional p = 1.1 × 10(-4) ) were found. Integrative analysis using functional genomic data from the Roadmap Epigenomics, the Encyclopedia of DNA Elements project, the Cancer Genome Atlas and other public resources implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium with rs11780156, r(2)  = 0.77), were putatively functional variants for two of the five independent association signals. The results highlighted multiple 8q24 variants associated with breast cancer susceptibility in women of European ancestry.
  5. Guo X, Long J, Zeng C, Michailidou K, Ghoussaini M, Bolla MK, et al.
    Cancer Epidemiol Biomarkers Prev, 2015 Nov;24(11):1680-91.
    PMID: 26354892 DOI: 10.1158/1055-9965.EPI-15-0363
    BACKGROUND: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored.

    METHODS: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium.

    RESULTS: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10(-4); OR, 1.04; 95% confidence interval (CI), 1.02-1.07] and rs77928427 (P = 1.86 × 10(-4); OR, 1.04; 95% CI, 1.02-1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r(2) ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor-binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue.

    CONCLUSION: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2.

    IMPACT: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk.

  6. Ghoussaini M, Edwards SL, Michailidou K, Nord S, Cowper-Sal Lari R, Desai K, et al.
    Nat Commun, 2014 Sep 23;4:4999.
    PMID: 25248036 DOI: 10.1038/ncomms5999
    GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine mapping of this locus using data from 101,943 subjects from 50 case-control studies. We genotype 276 SNPs using the 'iCOGS' genotyping array and impute genotypes for a further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs (rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds against >100:1. The best functional candidate, rs4442975, is associated with oestrogen receptor positive (ER+) disease with an odds ratio (OR) in Europeans of 0.85 (95% confidence interval=0.84-0.87; P=1.7 × 10(-43)) per t-allele. This SNP flanks a transcriptional enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and chromatin looping. Evidence suggests that the g-allele confers increased breast cancer susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast cell biology.
  7. Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, et al.
    Am J Hum Genet, 2015 Jan 08;96(1):5-20.
    PMID: 25529635 DOI: 10.1016/j.ajhg.2014.11.009
    Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
  8. Orr N, Dudbridge F, Dryden N, Maguire S, Novo D, Perrakis E, et al.
    Hum Mol Genet, 2015 May 15;24(10):2966-84.
    PMID: 25652398 DOI: 10.1093/hmg/ddv035
    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.
  9. Lin WY, Camp NJ, Ghoussaini M, Beesley J, Michailidou K, Hopper JL, et al.
    Hum Mol Genet, 2015 Jan 01;24(1):285-98.
    PMID: 25168388 DOI: 10.1093/hmg/ddu431
    Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs) spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1232 imputed SNPs were included in logistic regression models adjusting for study and ancestry principal components. The SNPs retained in the final model were investigated further in data from nine genome-wide association studies (GWAS) comprising in total 10 052 case and 12 575 control subjects. The most significant association signal observed in European subjects was for the imputed intronic SNP rs1830298 in ALS2CR12 (telomeric to CASP8), with per allele odds ratio and 95% confidence interval [OR (95% confidence interval, CI)] for the minor allele of 1.05 (1.03-1.07), P = 1 × 10(-5). Three additional independent signals from intronic SNPs were identified, in CASP8 (rs36043647), ALS2CR11 (rs59278883) and CFLAR (rs7558475). The association with rs1830298 was replicated in the imputed results from the combined GWAS (P = 3 × 10(-6)), yielding a combined OR (95% CI) of 1.06 (1.04-1.08), P = 1 × 10(-9). Analyses of gene expression associations in peripheral blood and normal breast tissue indicate that CASP8 might be the target gene, suggesting a mechanism involving apoptosis.
  10. Johnson N, Dudbridge F, Orr N, Gibson L, Jones ME, Schoemaker MJ, et al.
    Breast Cancer Res, 2014 May 26;16(3):R51.
    PMID: 24887515 DOI: 10.1186/bcr3662
    INTRODUCTION: We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age ≤50 years.

    METHODS: We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics.

    RESULTS: We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (P(trend) = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (P(trend) = 0.005) but not cases (P(trend) = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (P(het) = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age ≥15 years (OR(het) = 0.84, 95% CI 0.75, 0.94; OR(hom) = 0.81, 95% CI 0.51, 1.30; P(trend) = 0.002) but not for those who had their menarche age ≤11 years (OR(het) = 1.06, 95% CI 0.95, 1.19, OR(hom) = 1.07, 95% CI 0.67, 1.72; P(trend) = 0.29).

    CONCLUSIONS: To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels.

  11. Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, et al.
    Nat Genet, 2015 Apr;47(4):373-80.
    PMID: 25751625 DOI: 10.1038/ng.3242
    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.
  12. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al.
    Nature, 2017 Nov 02;551(7678):92-94.
    PMID: 29059683 DOI: 10.1038/nature24284
    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links