Displaying all 10 publications

Abstract:
Sort:
  1. Hani AF, Baba R, Shamsuddin N, Nugroho H
    Int J Cosmet Sci, 2014 Oct;36(5):451-8.
    PMID: 24925684 DOI: 10.1111/ics.12147
    Melanin is a major skin colour pigment that is made up of eumelanin (the dark brown-black colour) and pheomelanin (the light red-yellow colour) pigments. Skin-whitening products typically contain depigmentation agents that reduce the level of pigmentation by changing the pheomelanin-eumelanin production. Similarly, in skin pigment treatment of skin disorders, the melanin production is managed accordingly. To assess and improve treatment efficacy, it is important to have a measurement tool that is capable of determining the melanin types objectively. So far, the efficacy assessment is subjective. In this study, an inverse skin reflectance pigmentation analysis system that determines eumelanin and pheomelanin content is developed and evaluated in an observational study involving 36 participants with skin photo type IV.
  2. Kamel N, Yusoff MZ, Hani AF
    IEEE Trans Biomed Eng, 2011 May;58(5):1383-93.
    PMID: 21177154 DOI: 10.1109/TBME.2010.2101073
    A signal subspace approach for extracting visual evoked potentials (VEPs) from the background electroencephalogram (EEG) colored noise without the need for a prewhitening stage is proposed. Linear estimation of the clean signal is performed by minimizing signal distortion while maintaining the residual noise energy below some given threshold. The generalized eigendecomposition of the covariance matrices of a VEP signal and brain background EEG noise is used to transform them jointly to diagonal matrices. The generalized subspace is then decomposed into signal subspace and noise subspace. Enhancement is performed by nulling the components in the noise subspace and retaining the components in the signal subspace. The performance of the proposed algorithm is tested with simulated and real data, and compared with the recently proposed signal subspace techniques. With the simulated data, the algorithms are used to estimate the latencies of P(100), P(200), and P(300) of VEP signals corrupted by additive colored noise at different values of SNR. With the real data, the VEP signals are collected at Selayang Hospital, Kuala Lumpur, Malaysia, and the capability of the proposed algorithm in detecting the latency of P(100) is obtained and compared with other subspace techniques. The ensemble averaging technique is used as a baseline for this comparison. The results indicated significant improvement by the proposed technique in terms of better accuracy and less failure rate.
  3. Javed F, Venkatachalam PA, Hani AF
    J Med Eng Technol, 2007 Sep-Oct;31(5):341-50.
    PMID: 17701779 DOI: 10.1080/03091900600887876
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and due to the lack of early detection techniques, the incidence of CVD is increasing day by day. In order to address this limitation, a knowledge based system with embedded intelligent heart sound analyser (KBHSA) has been developed to diagnose cardiovascular disorders at early stages. The system analyses digitized heart sounds that are recorded from an electronic stethoscope using advanced digital signal processing and artificial intelligence techniques. KBHSA takes into account data including the patient's personal and past medical history, clinical examination, auscultation findings, chest x-ray and echocardiogram, and provides a list of diseases that it has diagnosed. The system can assist the general physician in making more accurate and reliable diagnosis under emergency conditions where expert cardiologists and advanced equipment are not readily available. To test the validity of the system, abnormal heart sound samples and medical data from 40 patients were recorded and analysed. The diagnoses made by the system were counter checked by four senior cardiologists in Malaysia. The results show that the findings of KBHSA coincide with those of cardiologists.
  4. Hani AF, Kumar D, Malik AS, Razak R
    Magn Reson Imaging, 2013 Sep;31(7):1059-67.
    PMID: 23731535 DOI: 10.1016/j.mri.2013.01.007
    Osteoarthritis is a common joint disorder that is most prevalent in the knee joint. Knee osteoarthritis (OA) can be characterized by the gradual loss of articular cartilage (AC). Formation of lesion, fissures and cracks on the cartilage surface has been associated with degenerative AC and can be measured by morphological assessment. In addition, loss of proteoglycan from extracellular matrix of the AC can be measured at early stage of cartilage degradation by physiological assessment. In this case, a biochemical phenomenon of cartilage is used to assess the changes at early degeneration of AC. In this paper, a method to measure local sodium concentration in AC due to proteoglycan has been investigated. A clinical 1.5-T magnetic resonance imaging (MRI) with multinuclear spectroscopic facility is used to acquire sodium images and quantify local sodium content of AC. An optimised 3D gradient-echo sequence with low echo time has been used for MR scan. The estimated sodium concentration in AC region from four different data sets is found to be ~225±19mmol/l, which matches the values that has been reported for the normal AC. This study shows that sodium images acquired at clinical 1.5-T MRI system can generate an adequate quantitative data that enable the estimation of sodium concentration in AC. We conclude that this method is potentially suitable for non-invasive physiological (sodium content) measurement of articular cartilage.
  5. Ramli R, Malik AS, Hani AF, Jamil A
    Skin Res Technol, 2012 Feb;18(1):1-14.
    PMID: 21605170 DOI: 10.1111/j.1600-0846.2011.00542.x
    INTRODUCTION: This paper presents a comprehensive review of acne grading and measurement. Acne is a chronic disorder of the pilosebaceous units, with excess sebum production, follicular epidermal hyperproliferation, inflammation and Propionibacterium acnes activity. Most patients are affected with acne vulgaris, which is the prevalent type of acne. Acne vulgaris consists of comedones (whitehead and blackhead), papules, pustules, nodules and cysts.
    OBJECTIVES: To review and identify the issues for acne vulgaris grading and computational assessment methods. To determine the future direction for addressing the identified issues.
    METHODS: There are two main methods of assessment for acne severity grading, namely, lesion counting and comparison of patient with a photographic standard. For the computational assessment method, the emphasis is on computational imaging techniques.
    RESULTS: Current acne grading methods are very time consuming and tedious. Generally, they rely on approximation for counting lesions and hence the assessment is quite subjective, with both inter and intra-observer variability. It is important to accurately assess acne grade to evaluate its severity as this influences treatment selection and assessment of response to therapy. This will further help in better disease management and more efficacious treatment.
    CONCLUSION: Semi-automated or automated methods based on computational imaging techniques should be devised for acne grade assessment.
  6. Gandhamal A, Talbar S, Gajre S, Hani AF, Kumar D
    Comput Biol Med, 2017 04 01;83:120-133.
    PMID: 28279861 DOI: 10.1016/j.compbiomed.2017.03.001
    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images.
  7. Hani AF, Kumar D, Malik AS, Walter N, Razak R, Kiflie A
    Acad Radiol, 2015 Jan;22(1):93-104.
    PMID: 25481518 DOI: 10.1016/j.acra.2014.08.008
    Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.
  8. Hani AF, Kumar D, Malik AS, Ahmad RM, Razak R, Kiflie A
    Rheumatol Int, 2015 Jan;35(1):1-16.
    PMID: 24879325 DOI: 10.1007/s00296-014-3052-9
    Early detection of knee osteoarthritis (OA) is of great interest to orthopaedic surgeons, rheumatologists, radiologists, and researchers because it would allow physicians to provide patients with treatments and advice to slow the onset or progression of the disease. Early detection can be achieved by identifying early changes in selected features of degenerative articular cartilage (AC) using non-invasive imaging modalities. Magnetic resonance imaging (MRI) is becoming the standard for assessment of OA. The aim of this paper was to review the influence of MRI on the selection, detection, and measurement of AC features associated with early OA. Our review of the literature indicates that the changes associated with early OA are in cartilage thickness, cartilage volume, cartilage water content, and proteoglycan content that can be accurately, consistently, and non-invasively measured using MRI. Choosing an MR pulse sequence that provides the capability to assess cartilage physiology and morphology in a single acquisition and advanced multi-nuclei MRI is desirable. The results of the review indicate that using an ultra-high magnetic strength, MR imager does not affect early OA detection. In conclusion, MRI is currently the most suitable modality for early detection of knee OA, and future research should focus on the quantitative evaluation of early OA features using advances in MR hardware, software, and data processing with sophisticated image/pattern recognition techniques.
  9. Hani AF, Prakasa E, Nugroho H, Affandi AM, Hussein SH
    PMID: 23366902 DOI: 10.1109/EMBC.2012.6346941
    Psoriasis is a common skin disorder with a prevalence of 0.6 - 4.8% around the world. The most common is plaques psoriasis and it appears as red scaling plaques. Psoriasis is incurable but treatable in a long term treatment. Although PASI (Psoriasis Area and Severity Index) scoring is recognised as gold standard for psoriasis assessment, this method is still influenced by inter and intra-rater variation. An imaging and analysis system called α-PASI is developed to perform PASI scoring objectively. Percentage of lesion area to the body surface area is one of PASI parameter. In this paper, enhanced imaging methods are developed to improve the determination of body surface area (BSA) and lesion area. BSA determination method has been validated on medical mannequin. BSA accuracies obtained at four body regions are 97.80% (lower limb), 92.41% (trunk), 87.72% (upper limb), and 83.82% (head). By applying fuzzy c-means clustering algorithm, the membership functions of lesions area for PASI area scoring have been determined. Performance of scoring result has been tested with double assessment by α-PASI area algorithm on body region images from 46 patients. Kappa coefficients for α-PASI system are greater than or equal to 0.72 for all body regions (Head - 0.76, Upper limb - 0.81, Trunk - 0.85, Lower limb - 0.72). The overall kappa coefficient for the α-PASI area is 0.80 that can be categorised as substantial agreement. This shows that the α-PASI area system has a high reliability and can be used in psoriasis area assessment.
  10. Feng YX, Kiguchi M, Ung WC, Dass SC, Mohd Hani AF, Tang TB, et al.
    Brain Sci, 2021 Jul 15;11(7).
    PMID: 34356169 DOI: 10.3390/brainsci11070935
    The effect of stress on task performance is complex, too much or too little stress negatively affects performance and there exists an optimal level of stress to drive optimal performance. Task difficulty and external affective factors are distinct stressors that impact cognitive performance. Neuroimaging studies showed that mood affects working memory performance and the correlates are changes in haemodynamic activity in the prefrontal cortex (PFC). We investigate the interactive effects of affective states and working memory load (WML) on working memory task performance and haemodynamic activity using functional near-infrared spectroscopy (fNIRS) neuroimaging on the PFC of healthy participants. We seek to understand if haemodynamic responses could tell apart workload-related stress from situational stress arising from external affective distraction. We found that the haemodynamic changes towards affective stressor- and workload-related stress were more dominant in the medial and lateral PFC, respectively. Our study reveals distinct affective state-dependent modulations of haemodynamic activity with increasing WML in n-back tasks, which correlate with decreasing performance. The influence of a negative effect on performance is greater at higher WML, and haemodynamic activity showed evident changes in temporal, and both spatial and strength of activation differently with WML.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links